Skip to main content

Python bindings for Yrs

Project description

Build Status Code style: black

pycrdt

CRDTs based on Yrs.

Install

pip install pycrdt

Usage

pycrdt offers the following shared data types:

  • Text: a type similar to a str.
  • Array: a type similar to a list.
  • Map: a type similar to a dict.

You can initialize them with their Python built-in counterparts:

from pycrdt import Text, Array, Map

text0 = Text("Hello")
array0 = Array([0, "foo"])
map0 = Map({"key0": "value0"})

But they are pretty useless on their own. They are just placeholders waiting to be inserted in a shared document. Only then do they really become useful:

from pycrdt import Doc

doc = Doc()
doc["text0"] = text0
doc["array0"] = array0
doc["map0"] = map0

Now you can operate on them as you would expect, for instance:

text0 += ", World!"
array0.append("bar")
map0["key1"] = "value1"

Note that an Array and a Map can hold other shared data types:

map1 = Map({"foo": 1})
array1 = Array([5, 6, 7])

array0.append(map1)
map0["key2"] = array1

Every change to doc (a modified/added/deleted value) will generate an update in the form of some encoded binary data. You can listen to these updates and send them on the wire, so that they can be applied to a remote document.

We say that text0, array0 and map0 are root types of doc. When they got inserted into doc, we gave them a name. For instance, text0 was inserted under "text0". This is how a remote document will retrieve the root types of the document, after applying the received updates:

from pycrdt import Doc, Text, Array, Map

remote_doc = Doc()
remote_doc.apply_updates(updates)

text0 = Text()
array0 = Array()
map0 = Map()
remote_doc["text0"] = text0
remote_doc["array0"] = array0
remote_doc["map0"] = map0

You could say that there is nothing fancy here, it's just about encoding data changes so that they can be applied on another object. But this is where the magic of CRDTs comes into play. Their algorithm ensures that if some changes are done concurrently on different objects representing the same data (for instance on different machines), applying the changes will lead to the same data on all objects. Without such algorithms, this property doesn't hold due to the fact that changes depend on the order in which they are applied, and that they take time to travel on the wire.

The most common example is inserting a different character on a text editor on two machines. Say we start with a blank page on both editors, and the user on machine A inserts "a" at the same time the user on machine B inserts "b". After receiving the other user's update, if no special care is taken, machine A will show "ba" and machine B will show "ab". In other words, their document states will diverge, and thus users won't collaborate on the same document anymore. CRDTs ensure that documents don't diverge, their shared documents will eventually have the same state. It will arbitrary be "ab" or "ba", but it will be the same on both machines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrdt-0.3.1.tar.gz (20.4 kB view details)

Uploaded Source

Built Distributions

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (654.7 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (654.7 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-cp312-cp312-macosx_10_7_x86_64.whl (653.2 kB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pycrdt-0.3.1-cp311-none-win_amd64.whl (462.1 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycrdt-0.3.1-cp311-none-win32.whl (438.0 kB view details)

Uploaded CPython 3.11 Windows x86

pycrdt-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-cp311-cp311-macosx_10_7_x86_64.whl (654.6 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pycrdt-0.3.1-cp310-none-win_amd64.whl (462.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycrdt-0.3.1-cp310-none-win32.whl (438.0 kB view details)

Uploaded CPython 3.10 Windows x86

pycrdt-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl (654.7 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pycrdt-0.3.1-cp39-none-win_amd64.whl (463.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycrdt-0.3.1-cp39-none-win32.whl (438.3 kB view details)

Uploaded CPython 3.9 Windows x86

pycrdt-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl (654.4 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pycrdt-0.3.1-cp38-none-win_amd64.whl (462.0 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycrdt-0.3.1-cp38-none-win32.whl (438.1 kB view details)

Uploaded CPython 3.8 Windows x86

pycrdt-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl (655.3 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pycrdt-0.3.1-cp37-none-win_amd64.whl (462.2 kB view details)

Uploaded CPython 3.7 Windows x86-64

pycrdt-0.3.1-cp37-none-win32.whl (438.1 kB view details)

Uploaded CPython 3.7 Windows x86

pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pycrdt-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pycrdt-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl (655.4 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pycrdt-0.3.1.tar.gz.

File metadata

  • Download URL: pycrdt-0.3.1.tar.gz
  • Upload date:
  • Size: 20.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1.tar.gz
Algorithm Hash digest
SHA256 5c1054b1c206c83e20df171f512d7d88a1d76706e973c22ea4d0bde146b1f384
MD5 a5c003b59d23ac13ce73f2c7d07f58c0
BLAKE2b-256 128808bc03efb86d319035ed2cdc8307b5e1129014dad3db3f40344e38ff6a98

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76746beb5185805fac1d61519849610dc5499d3cfcd755d7023a3bc4f0a90294
MD5 320536490213b39c2071f86a9df9404e
BLAKE2b-256 f9739cf2ea5cea02bf84c78abad9a30138d2b10b4ae6686c383ce39eb4d1a213

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 af15b6470553960619015a2e2cde1f39d1900e2c09813c5615e824fdc034bb81
MD5 7af926dfcf38c5c836fda0cdb1c96d8f
BLAKE2b-256 e4ae1d01a857d5a097f3ecc3562e5ec5c33509b9f457930f73f86bbcb553a31a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 08bde6f3a59a7d095cb176964c634efa143bef2c59b69d621b74cf6eb8802561
MD5 725aa48ae396b38589604bf52d1a0578
BLAKE2b-256 2cf2740735cfe500c51a5affa20f9e6446fcba5bd02564f4389940e762ba993e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 63c7616fdab8e1b22cd12951d744c75254cfcd6596940cb6e64facda055c24a9
MD5 d0e06ff59200b70046725c65149fdb78
BLAKE2b-256 ac5dda24e4f810722d442e3875e52d3efe60a98e5b98f9dee0e49fead91ea240

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c9b28c49d2f6270e5307af2a627f7c35843e9ffa8cbb718980caab3e5d70d757
MD5 afbc055f1d8b7cb9c23bd1f62aaf3f74
BLAKE2b-256 a14100a5cb846d41c8870a7b2ebf133371ee9e49e646e6e6509e2ffa207c01cc

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 b75917040430eee135d008312043a95897336b31fff5d6b0381f641bca67e2e6
MD5 c7bef33263987310bfd8b03437ffeb04
BLAKE2b-256 beef437067f6d3848d0bf49ba43fd2fe012ae58b8ded71538ad88049d6ba95cc

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 810187038e8c39b871e154bb754a198000eb7b258958894a19961def27bedb7d
MD5 ab13ef6759980809304b8f2f5f65fbcf
BLAKE2b-256 e411a99ca82656f2def878ff80bb74b7ce22aa646e8a91405e06e5eca1a4c37c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 dd9264d02f8d622feddb8e2e1012345e871d1de6de121a49daf1dff7cf5726b1
MD5 43b4b704dfb8fc4c797d65864dd93a5c
BLAKE2b-256 9e503cc7529ed9f049f3bd5deeaf0d0770baeae0b218ddd4c39738f0edfe77fd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4c024e4b3fe17aa3042e19b990cc2f472747ee4e9a76f177f7022c85ba659629
MD5 686896b359cac8d80d9ba15399031b3a
BLAKE2b-256 b736573d7cf393cb8095c8510c417db1f096889b8a79cf6ae69324e85b2bf990

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 2eb20fb1a9cc140ad0e886dfd85ee8b624a2373c581a9616517e8b06f53ea818
MD5 94606917689b1a95c82a488121eb5d3a
BLAKE2b-256 eb94c806df5e8fb0c40fdded4a7a1afbdc1e755aa93408f7294722439a70625e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f2a0e3a24c8a3851a3395660e00735719748cdc7a59c7ecc9fef24f1dd9a7382
MD5 45b6a63aaa8cf2c9ef2254106681f08b
BLAKE2b-256 f4bd6798bd902fc95fcd783985e6728aaa7fb4e11a50cbb57cd63128ae94ac8d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 72a09dcd34f497d1c5be300b211c968b1ceb10b2532d473fd6d0e6fd02d49e48
MD5 9cb5de6723c664a31055f28089395168
BLAKE2b-256 826fa18d2b420d70c50079bbd16832b804424f27535fdd9194b1d9b9321b34a6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c6d14fbbfb660478ef24675209a158dbb22bae2c7234b2937f3892e680882894
MD5 4b11940dc9bc97a6dc6c7037999975a5
BLAKE2b-256 2544ce5acfa74425a567bdaa8ca2bbb3b712799cc728ee644ba49c2808d8f85c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 7828d6f3d29dce0301251f2279b7d717b26d98e922f04e87687c9dcc3dcbaaec
MD5 055b59dd7697699586a390bdc45ccc5e
BLAKE2b-256 9a62ae7c94af11fe2fafc5ddf1d48dfd9db76753bd59256dc3167dbcae2b6b08

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5df73cf81841dca5ea4284e1cba9fdede3475e722f9c360d53936758bf309c46
MD5 70a134fffcf71ba35ed70ead56b8c513
BLAKE2b-256 29167e723caeeec145a6dd10b22c278d925f905451af6d8794a43d79da30a38e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 6d23dd8af41b0cd7f93704287bb1ca97b34e7f6abb18a9f505bf5bfe7231c290
MD5 1ec899e69d27233731bcf3c5952466ba
BLAKE2b-256 bf42f541852b9b2ab7c62aba70b4af90328946e1cff55d9b6ba745458126dbd2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c7d63866019c7d3202aed82dbf01bd2fb76a73d4f4ed156fa73f78e5a16f4ac2
MD5 cdfae85d2cd482b557cf1a25d27fa3b3
BLAKE2b-256 50d529da6aeea783fa5f80dc07a89322ad394e06d02325dd85f8efdd796e1b2d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 99e847992052ff01e5ef865b83dbab9cd5b339294d9ab42e6d2cb13e7eb746ff
MD5 b987293654453859a47b8c49702bb18f
BLAKE2b-256 0d2bf5f59b871c62da1c879435335a7ce737cb3efbd0e51c803e5419532802db

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 852336f39b4d63cac3ca72cee8d4b1c137e0fc1ff06eaac68cf780822f9c1cc4
MD5 b29f4e96ef5537ef624eb679362805d5
BLAKE2b-256 0c92d8e98e2faad96442329969a26556a2b99dddc86a12fae2b78268d1a26a72

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 d58ce7da77f6fd5727b2d928ccd42c5c61ba1896d4c9e2e3a01a8003dfcf09cc
MD5 f2f73176374e47553e18eb58dd552c0a
BLAKE2b-256 574c27a17fd3a3734f495c0c2e991aa9c4f455efd68e109c971bffda7671df03

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 03ae239d62ecacff711f4e1918a39b3a6c6d2f5fb613282fb05238a5ca581ac7
MD5 ee515162d1e0be61838d0b113b02b9ae
BLAKE2b-256 56fa9d025d08845f72a2adbaeac34a69741941d557d25370dd39b4ecc025d973

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 1944ffb13546b686cddb7f392b522d7ea37b38827eaa71e3c8d0b9f13cebdf6b
MD5 ecae79ae60338d7de33b2aa0ddac92cf
BLAKE2b-256 375503878f565063a7ee65c91ec6ad3bbaad2c49bdf48836e06b2232c36c78b9

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7363c7fac889d0300f5f016cd96c7b5f6fdcb76746307965f4cdcc8262ba9219
MD5 054af452cc345dccd3dee877f0661e3a
BLAKE2b-256 7dce2b4c8a1eaaef5e60a35458173ef979834f9abe23f908cbdf3be9c3b755a6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ffcea8c2c4dbab020a9861585508e4d9b9652360a27e3fa4e3a265b2f4e0feaa
MD5 235f6a9bf28bdbeaefc442ce55eb82cd
BLAKE2b-256 92b76aed7c84f338ea4f6cef91d80f325a535070aad93b13441766ba5635909d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 462.1 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 8274fc388de5ffdb587a8819a047daa145ceca49cbef768baf91dd0d5748c92c
MD5 8a67437d0db73c84c6a3a5fe2724a748
BLAKE2b-256 c624b38b97de6ae88d7761eddef6bed013d20c18b41cfbf2b88044ee6742bfd7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp311-none-win32.whl
  • Upload date:
  • Size: 438.0 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp311-none-win32.whl
Algorithm Hash digest
SHA256 96257e664e603d87e2e8a12497497e37ff229824b75466307a347d819337c511
MD5 bdc19c71204531efdecbec00808293d5
BLAKE2b-256 f82d44397905bb5191467690f2cceba4835cf188341a437872df3561f2ace31c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 afcaf659601cacbf443baa965783aa7a8609175d39f138978ccab7efa4abb9b8
MD5 0c6d8d31d5003112b0406404cd24098c
BLAKE2b-256 83e4e408c43ef66f88a32eb0b7eed197943d2eb4d0f7a0eb92455792e0d12d47

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 a0349580ff7762eb69748cbd040166d4eaea93b655365b0405d68318abd9bfa0
MD5 a484fc3eb236f26df92f841d77e9f4f5
BLAKE2b-256 37c20fe884b580bd6f1cc68d7769f2bcbf01c6612be07b05e01d6e8f90efd260

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f0898d5f194a91c5c166e1d83434685037cf7d49aa4b747628ee572cf6869241
MD5 ebe4fad1cd346df2b449b79b6a1a940e
BLAKE2b-256 eb615258309d23a92c51a21af2c16b953694e0b83aedeb7d76ab4e8f57027cd4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e17ee24951c61ccbd9bf855daa2d597e793d5f75a04be4299a823c7f4a453973
MD5 00f725a272d2a8d6521f076883786063
BLAKE2b-256 75e0370e562e4f86dcf08b790570cbb0f2562b17dac3662763fa7d55b23fc961

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fe6b4a441b244345c50beedc08374ecc50415e529e9fff618d6741ee3f282c0b
MD5 58cd0cb680b1bf7073763b594aa62a72
BLAKE2b-256 67ff132b661bdc3eb9dba94cbff59bac6747e68817e7551c008ae8f639fe9852

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 41c30411aba8e6f763532971f850dc3d4e2731e8b084d8eb27a7af4ede2129f9
MD5 6cebcb1680d7a6528cb545adf903c399
BLAKE2b-256 0ad9c4bc08fc0713ec474db782bc94a32071ac87b489c39fd7586a36941a26c3

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 0832bdd7bc5fdbfaea2551127ec53b633e5c13b5b102b7e13e83f8bab1f28a40
MD5 9d407da57d90b5802ca9df1986fb39db
BLAKE2b-256 a8d2ae3d2bf81d46c4f2f7e0944157040e251438580bb1d4fdce82a153361414

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 650c7ca21dcf170052c95565fc9b3af8f620c9a3dae641116689143641a6f3b6
MD5 2f796a04b0244b8c2a78acc1d951f38c
BLAKE2b-256 d53802ddbd5f06bcb51dc8d211eb204ae6a5a285dda9e632d19f9eac82d46f55

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 462.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 be7f4df2738c2315579e4589b7060c5a717a769a75647897c0ba860e30d5c1c3
MD5 c06220b54af0a0f3d696d9d4291a3fd7
BLAKE2b-256 cd3c81a8a530c59d219552c47536ec98e4080b935a3a145b64c47ebb690dd13f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp310-none-win32.whl
  • Upload date:
  • Size: 438.0 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp310-none-win32.whl
Algorithm Hash digest
SHA256 384e3c7e4556ec079801eb703a03db90f5f2f8fca544fb20617a2fe335be6a5c
MD5 5c039e2258e263cce5c50c5958393123
BLAKE2b-256 00fbb547453bb03e811030e545456d402d2ae627216946fc6572a49f6a7ecb86

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 061f3a06052c040f37ad1f599bc0003fb4d596df3cb1765dd9f99cbcb6b6756c
MD5 3b5a31aaa9612afe7338210a0d0bc6fc
BLAKE2b-256 fc36ccfaf09c9f579a5d714bc562df0a0f46eb673ed68b0fd785a58839aa5bf1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 f3be2b9e58172a284db39a8ec3439651d0bc40a05b3bf74ba9602d2ea37b1bb7
MD5 765be389ce6b1d99e65db11bb506f2ab
BLAKE2b-256 1db8cb7306aa628660231ea0dc536ef0a2e2ba07f33aa5f6088c6f84014f4a38

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 23a7cc5c3629ec526e2bf2bae8a884e6ccc4dfd1bfdaa672b0a059e3b56447da
MD5 751809bfb2a897f26b2a1a1ca810f67d
BLAKE2b-256 035f6b18ec4b77a81f76a0595e5cc2afdc181b68133d8ef91515798805ae2359

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 de8f12372eebb44e157f3d15e3065d656c410de206efd66e7f047e452516faed
MD5 a517221fd8ea873046e4c9af32f052f9
BLAKE2b-256 0e8f63cd4ed3346071aafdf75c0a426f82629a5ffeb3a9cdc853b84326b22859

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3dfe38ad951de2931fe29f994b1a23a821361942fa60efd2d582bd38b447a84d
MD5 245019bc7420f984d12a68ba9469d5a5
BLAKE2b-256 a84a8e0821e9fc900399e4d8a9ffd4fa26b277eeb0021899a4480f50719ff7c0

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 8911d59ab60aa4daf70288746a274530bb87d98ae83bd6757b35f24d6e6ce157
MD5 7746223e1a923068786a2d71477e38b7
BLAKE2b-256 f729a962a12d6ae799c4ebe081088aa9172bfe54dd5563a35c70f4ae88095331

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 9d4dc7ae34433272bcb8ebaa4e4c217fd49e369f99b5dc1ae81e05f3b9fc36be
MD5 869e1b770f068fcc4045bd188ee85412
BLAKE2b-256 732018ce445c5d1fa36c7eb9b6a2609b2c7089dd04e292bcb6bc4d71b168e2b2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9fabba480d14f5f70fd28482dbea05de542d4820482ef674e0c3bb5a719c6b4e
MD5 33619196d04d1135cdd0ab8ee7b27d56
BLAKE2b-256 e13ff837acbe898b8c3a656b1fd4f12df0f9a7f801651b49c941d3df849b6911

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 463.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 09f2832f7385e2575d4909983fc68cc140357c420b4ba7758cdfe56fd0daa3ac
MD5 2493b24626adf35fb708e6f670815d53
BLAKE2b-256 cf3da56b2bf429ee10fbc5ffa8aff90db3a5e7f7fa595eeb6e752f2ad3f99f40

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp39-none-win32.whl
  • Upload date:
  • Size: 438.3 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp39-none-win32.whl
Algorithm Hash digest
SHA256 ae25aa248a7e3abb8a1848e53395f448a16d822682e5fbd950d362fe9595a843
MD5 267088de762638c1a5787d5cfdb0b76c
BLAKE2b-256 a39c8e04756d135b0a1a6dc6d7275e5340ccfbb692130b2427f4b2ffe301c301

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5220df41f901ae497cb55f52230d3e0f8c46c057c2c9672d2dab59f982c84eeb
MD5 6839f120f364e37e8f69bf5027459898
BLAKE2b-256 ad55fab0c4d79accba5b51aa66bc1a60d9ecac6f0d77b3ef2a914752c31e5f81

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 d9f2f17ea4bca4b8de9ae6c587eca0de45007f661b8bc94e19ec8731bd731458
MD5 e59856ac6daa2ce454137aa8ec27d95a
BLAKE2b-256 72b32e8fe71c6bbc5bbd4070ca0d5c9f1a5c115b8e2b8d5a0219452d7b80beaf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 16539e620300f85c4f71d8163f865c93db2df72b31e7c6d55b3da77b22853b72
MD5 7436d083fc1835558a622a75c6b8fae8
BLAKE2b-256 21fc01498f68d8602588c928eaf9df5fcfce79e8212d8f9fa3ab857a889b4d03

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 e33d34ebc842af76e883df2750762e84cb5b330ec1abc05ef45ae1c932a97f8c
MD5 3d8f36abb521e039259bb3d82a8603f7
BLAKE2b-256 7463144f840dabf3f5b675d03fb8d42b4ddf35863be70230727de8da6610fb6c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 136325d2bf4e3dca456b9676e51bbb423fc763a8b1b2cb00d246fb5c624344cd
MD5 d2214e64fe64ab1da3fcec07d879a1e8
BLAKE2b-256 e94f1df919b8ed523f3cbd09362006c34290a9a3edb5d817d147a6f9278546ea

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 796f0763a81546e2c79fa0a2ac36239f1631c967a34c382b94d348d067dd5a5d
MD5 41d72eb72a3d6e9ef4b44423870deaf0
BLAKE2b-256 51f6b6da7ac60480d005633ce9d69d35da8c3439bbc8d6682d72900c4f159141

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4f2b1d8589b27681135d318b005477ebdf11a042aa04fc6045465d89be25ee1b
MD5 87cecb6b656eb32166a60bbc405c5066
BLAKE2b-256 4701598b0aeb3f5b7389641ff62d7625f12497c39e810e051c92563629f501c1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 79e16ba5007e8a28934541c17baed7c96d140b9d70a47c0892f008b65457033f
MD5 6718a1ef5954fd91923629e3e3a9da48
BLAKE2b-256 ad8a0ad27feae13de5a6f59266614920b5c033ff4b87723c531dc5bac085f60b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 462.0 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 cd7de0e1dd81e253302d6290f7aeaa9111be21fdb578f607c0331f7d9cb6ee8d
MD5 12b51be05f7e46d6c03c9ef562d25a6b
BLAKE2b-256 47dd0f25985e3b4f4376d94a97206bdc2470d5d8a34c784aef34b1abe2de82e7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp38-none-win32.whl
  • Upload date:
  • Size: 438.1 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp38-none-win32.whl
Algorithm Hash digest
SHA256 fe4f359106596313df1c6809fc4d0d9cbadc05616aab26602cf2d2b9319ec8b6
MD5 bfac4e97ce7aa399057e70fc3a0ddf5c
BLAKE2b-256 e2c96c0e55f4b4a08da7feecbf49300240f87182d9f3eb5eb24dd98b2cd80e5c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 00642e5db5bee01ff98f7bfbf6f5ec3ce86a298d6f4da0155f97ff7ea0cde21f
MD5 e9fe701298e01377ab11d3256f6c5aa0
BLAKE2b-256 16392090de9a881816660fc9c672436e6f80bcbeb5904d10344ffd4644ea539b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 fa47d887226e3adaf505bee35a587178de90abff966721bae3c555b18d1230d6
MD5 b3d09d88234b444410f687fc6f812045
BLAKE2b-256 f403bb4f7073435fb188790d77492d3824f126d975d11fc217031371ea95e397

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 085051717e0d52cdd103e63d2e4855182757bee1a4e7651402dc7b3143337ea4
MD5 6233f628d45aa0157d59da8a9aa44f4a
BLAKE2b-256 6477085a1d892b91100345df0d60b08bb0a7143b76b43d59e2ef3dd580f795fd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7253d76342aa1896784123309332b1747b4185947635f6ffc1ff292a4da75a41
MD5 946d72b7b81674af02017c39208e44a3
BLAKE2b-256 bb514f2d7a0a2e1299234d82d617f0233759f175dc513c45b0c6df11f34abe4e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 b8b4a19e2e82bf921ddd6ce01c26706a198fa5f01dc855f9215816fed8501baa
MD5 ef4d8417ca63d41eeba700864b33bddb
BLAKE2b-256 6ba8280b82acf0198289fbbd1428dfb3f2151bc5acc254dace08afecefeda445

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 627e9cdcd007c50213e4242b20aa9e7702a9df636b39213e8afd31c9d5a67a53
MD5 a1cf1e98e5b975712c8e5d6ffc90ae57
BLAKE2b-256 043a2afff0bf63d5605db1d7fbf6f3abfdb13aaa0a34e84f30d09ad17d0d809f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 5040cdef797b98ab9fa45329d553d62e1dcb19319030599f6b85cd5cf51af17b
MD5 8f572b95fae4e439f067b1e425f952e2
BLAKE2b-256 91449ab407d69f74339e4f245854df06a2f291b9c76e3d912637a3c22fd82c31

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 8ce313677429989266529144b4cd24608c721279c4ef84acf483f7d50d3042ab
MD5 1dedb195892e52c2c1cb96fd8cb4764a
BLAKE2b-256 a4cf7ecd8d7e2913e126d444335bda728706de15177205ec82a4e84bfb0f98cf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 462.2 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 a929232610d84f772b1f3858d0e119e29b3ce894c6e6975888d01e77a5ec219f
MD5 76aae1385026e13a7e5eae6c49a2a9c7
BLAKE2b-256 2e1370a31442db6583f85d86818c4348103c9dadca7dc6fe50ca94a187b20172

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.1-cp37-none-win32.whl
  • Upload date:
  • Size: 438.1 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.1-cp37-none-win32.whl
Algorithm Hash digest
SHA256 e7f0de5a23f954c14b75a3d89f5130071e0e58911c1ce2037202ad8653d60dcc
MD5 596c77e83aaa41a049a46b1327f76322
BLAKE2b-256 a27f9ed27f88a53b85f25e20388f6566e06a679633fb9ae77cd2417f6ec83c0b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c362a00246aa8935f4d8ea4d070694a989f2d167b1bc4a6df8f11b3205a39358
MD5 0a29363c8d218c3d734b6e2213dee63e
BLAKE2b-256 ffe13649fb512994097c607ee28388a595e48b67814de9f2692f0f2e6ddab858

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 cb8ab9d67b2fe25435c0a2a3db98ee6848ae22fddc07a53f68d9fff3971678a0
MD5 e621cd5d9a3073d3ecd9aeb86fe8a972
BLAKE2b-256 b21a19d9a6b8549092a8b32ddbe2e410590e77e908f4d97997580a10d8feb69b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 3e4eb59b58ca8ab2f94c9a683d814e438416704a2e8038907a07c97cb1cfd5f0
MD5 748f67e5affaf4fdfd0258a16fca0e0a
BLAKE2b-256 4bec58aef744c246df7ffb1d507d79362845414c2268ee4e2cdc38d105c5b975

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 6f033d55e1c44545edb893c5d5a4c2534892bf9c3f235364a5fa76e05eb2c867
MD5 e88ed26f505728a8351530631935ee68
BLAKE2b-256 b9ea05dd301e7ae7f69dd7a08242bc511c7266e08b8812e3ae27ca98d18916c7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 84722f8699dcf9c9f2d44da23fe377a4b75fb3459881002002e35dc2d4db34a1
MD5 b512790fb91541852448fc01f92298af
BLAKE2b-256 79e039038c7501ae51163cf8ecc51385ac2f72b8be67a10880d9e960a72eb3e4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 d2e95ac8165e7dcc0f8d0a6134e109c651ed29d373052a6073b3211e57608794
MD5 2b4e0329c9f3576c9db848adf2039ad7
BLAKE2b-256 59050a004291d6b6c6beeb26d96ebffbed69a57a702ff0328fc2910d8ad1f078

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.1-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 ac9714361c3890e27ec3f258aabae6aeee359727524bb2d4ec19d74430171514
MD5 993018773856cb7fa9140f65b2844d68
BLAKE2b-256 beb7d67599f7cae16aae2194bdf77a3b66922e98c2dc206033e027e59324bc44

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page