Skip to main content

Python bindings for Yrs

Project description

Build Status Code style: black

pycrdt

CRDTs based on Yrs.

Install

pip install pycrdt

Usage

pycrdt offers the following shared data types:

  • Text: a type similar to a str.
  • Array: a type similar to a list.
  • Map: a type similar to a dict.

You can initialize them with their Python built-in counterparts:

from pycrdt import Text, Array, Map

text0 = Text("Hello")
array0 = Array([0, "foo"])
map0 = Map({"key0": "value0"})

But they are pretty useless on their own. They are just placeholders waiting to be inserted in a shared document. Only then do they really become useful:

from pycrdt import Doc

doc = Doc()
doc["text0"] = text0
doc["array0"] = array0
doc["map0"] = map0

Now you can operate on them as you would expect, for instance:

text0 += ", World!"
array0.append("bar")
map0["key1"] = "value1"

Note that an Array and a Map can hold other shared data types:

map1 = Map({"foo": 1})
array1 = Array([5, 6, 7])

array0.append(map1)
map0["key2"] = array1

Every change to doc (a modified/added/deleted value) will generate an update in the form of some encoded binary data. You can listen to these updates and send them on the wire, so that they can be applied to a remote document.

We say that text0, array0 and map0 are root types of doc. When they got inserted into doc, we gave them a name. For instance, text0 was inserted under "text0". This is how a remote document will retrieve the root types of the document, after applying the received updates:

from pycrdt import Doc, Text, Array, Map

remote_doc = Doc()
remote_doc.apply_updates(updates)

text0 = Text()
array0 = Array()
map0 = Map()
remote_doc["text0"] = text0
remote_doc["array0"] = array0
remote_doc["map0"] = map0

You could say that there is nothing fancy here, it's just about encoding data changes so that they can be applied on another object. But this is where the magic of CRDTs comes into play. Their algorithm ensures that if some changes are done concurrently on different objects representing the same data (for instance on different machines), applying the changes will lead to the same data on all objects. Without such algorithms, this property doesn't hold due to the fact that changes depend on the order in which they are applied, and that they take time to travel on the wire.

The most common example is inserting a different character on a text editor on two machines. Say we start with a blank page on both editors, and the user on machine A inserts "a" at the same time the user on machine B inserts "b". After receiving the other user's update, if no special care is taken, machine A will show "ba" and machine B will show "ab". In other words, their document states will diverge, and thus users won't collaborate on the same document anymore. CRDTs ensure that documents don't diverge, their shared documents will eventually have the same state. It will arbitrary be "ab" or "ba", but it will be the same on both machines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrdt-0.3.2.tar.gz (20.7 kB view details)

Uploaded Source

Built Distributions

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (654.9 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (654.9 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-cp312-cp312-macosx_10_7_x86_64.whl (653.5 kB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pycrdt-0.3.2-cp311-none-win_amd64.whl (462.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycrdt-0.3.2-cp311-none-win32.whl (438.1 kB view details)

Uploaded CPython 3.11 Windows x86

pycrdt-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-cp311-cp311-macosx_10_7_x86_64.whl (654.9 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pycrdt-0.3.2-cp310-none-win_amd64.whl (462.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycrdt-0.3.2-cp310-none-win32.whl (438.1 kB view details)

Uploaded CPython 3.10 Windows x86

pycrdt-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-cp310-cp310-macosx_10_7_x86_64.whl (654.9 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pycrdt-0.3.2-cp39-none-win_amd64.whl (463.2 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycrdt-0.3.2-cp39-none-win32.whl (438.5 kB view details)

Uploaded CPython 3.9 Windows x86

pycrdt-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl (654.7 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pycrdt-0.3.2-cp38-none-win_amd64.whl (462.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycrdt-0.3.2-cp38-none-win32.whl (438.3 kB view details)

Uploaded CPython 3.8 Windows x86

pycrdt-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl (655.6 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pycrdt-0.3.2-cp37-none-win_amd64.whl (462.3 kB view details)

Uploaded CPython 3.7 Windows x86-64

pycrdt-0.3.2-cp37-none-win32.whl (438.2 kB view details)

Uploaded CPython 3.7 Windows x86

pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pycrdt-0.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pycrdt-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl (655.7 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pycrdt-0.3.2.tar.gz.

File metadata

  • Download URL: pycrdt-0.3.2.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2.tar.gz
Algorithm Hash digest
SHA256 f5d4f1407a940b883ef096ea5876c46b439705c1fcf35e1456f785607351e201
MD5 15cff5fdb56930088fe7ffc2ce36687e
BLAKE2b-256 ee258c78bf3c59e7283a3c556d0b206ce768c55d47506804d618eeb64c8e5d39

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5a7e8ac2d5fe6bd93595159f8956e53b3d6aa7e6232a853010cd06a10e38deab
MD5 a89f4de96588615c70efe4125607a077
BLAKE2b-256 a2be374e7eee739343ee033e6f18a63c549347061a6f85255cd5505a4b76e01b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 939252d626209b34848c134d8db48bdf912ca8000a2b73ab9724d80d38198cf4
MD5 007f3652f91faf1803a5e14ac2e5c92d
BLAKE2b-256 c7a0bb1b8b971f99b170d6364b4034a9344e81e426a34d91ee74c342850a6b4b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 aa3d239abb3d3b4fa7f7a4a8455b14d31e6e035cd9cae25d30123640bebf662b
MD5 1a4d6d9ef936334541e1580ad25ff68d
BLAKE2b-256 b0ef33078ab7b7282c440b8ebc117fdf1b0f784a6f70073685f6f2bf322449cf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 b448ff3b6b6271f2ebded7cafa3f69ec73f6f58895aa08eaf61d67f3dc2de7ba
MD5 76d02d62854d99f86837d0b5cc43ab1b
BLAKE2b-256 2254bd664c925820d40b27a4eedc0210637191174ebd0a498b95abe3ace819c4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ca7a80fc7b7228d9e6cf10b1cb7b026023c46d74145f9e20852f42639f2a14b
MD5 fac48da5f580309cc341545cdfc3f27b
BLAKE2b-256 c17ee03555885355e0093b36162097a3946ae6b058f95f7e1e78263719723634

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 fe99ed6908c652f01ad70c4a1b06f9875b4cc3f540e2e296ab0c32823fa96caa
MD5 921055211b7bbcfe95a6d63601aefd3c
BLAKE2b-256 6cd3164c7329f1967d6c8906404901004e7523c1f4d09fb5af404874786791b9

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 49b67970f695839607a3780e90ba8b1dbc3c665e350b1acfda633e90267b51aa
MD5 53f5856b0f2efb186534416081788d32
BLAKE2b-256 6225b9b882c7af958957602f865dd72bb4fcf67e0ec25c9aed9a92ad6b74c826

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9a2a1825d460827b552f4c71d87e3450357ece3368d4ec0889821586fe69220f
MD5 1eab51a737c7fae9b036e5c44b21324e
BLAKE2b-256 5bc1282b8b5e2095b5a3bfefb42c9c4b88c6a3f55d117fabb5ef9f8fe1226e2c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8f3ce08d34c08595d4aa967174fab9afde132f5885faf81d8683a05b5d5586c2
MD5 e7cc86806423a1cca0e8e3a430fa0d9a
BLAKE2b-256 bd87cc10e4b2bb9ba7802458980216c92298f1cc7f2f0b3d4516df57c82a9ff8

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 db90314bb817623808cc4b6d9fdc53d2f22ba2a90698de70981719cf6bca0ea3
MD5 1d384a5274438130743c3c3129262aec
BLAKE2b-256 a929bf655af9519a4a6cce88e86aa318a1a4b75b7f78687e903d827613e6e93f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 da45c12dcebe1fe46e0591ba2b30d8f1ec90bfb8670af2c7c258270d0a8eb0a7
MD5 e9387982434e7bd2a4bdc0e11eb99e2c
BLAKE2b-256 de936b574c7ff704f7ae45c687192234981ba1139a729b924bf445f791a5ae9b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 92dfd823697d1e2f415069e38ac36d88bf4f976039fffa1df78f035a464bf72f
MD5 87c8a06828eb2b15e1615c1b0d62b2dc
BLAKE2b-256 061bd084c67e50be72cda858cfd471a90fe5d4b39fdbe1e83a8972e997768d86

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 acc7b6126ba09b2a4c35e88c6f1f1d4855ee692fd218304b7dfc565a5122dab2
MD5 2a66da485531e9b34b7a79699c507fbe
BLAKE2b-256 663fc410dd1fe24d578dd0d9557811b4b0d06bef42f8dd7582ce34ea981a327d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 560d27bab268cb488109c406ecce65bf2295cd0a1315fdabca780cd19235137a
MD5 a2f38f2bd6857206837331a4fe2f80f4
BLAKE2b-256 025f255253e38a4f764a4e4fa878cde5a8bcdaac0b8daa1b601c2c69f6f736ad

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 36de03c590828cfc897cbbf85fdb241ebcc09d847fc538a627bc4737e67a31a1
MD5 9940a78ff739fbdffa657521f4bcc983
BLAKE2b-256 1c9f9ce276b5e977ccf1c529e4bef4e5f07720746e6f9c77c9b9ac8c8bbaba2c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1ffacd29869b1c9b87480c817f26c462344206ce2b5443f3ac0254033845253d
MD5 f33f4be903eda5dbd3e4db2fdc002e2b
BLAKE2b-256 c41d2877b6b87fb8a051b6851ae4c225c67113d34cdfcf5a32c38fcffae9f884

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 03c11608df79e78c45dac59278d8e88dca09ed63d70abfb464a7d4e31f059394
MD5 eda78b1ba007f933c07ffd2dae7a3305
BLAKE2b-256 1138645d2172db9f9f7be943ffff4c2beabfae548508b04e6c0622deb67fb62f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6affeedaa5ca07efd0b82f14f372e00a32e01b1775f7d86c03a2233328f4f8f0
MD5 b2b540cd514828b3c7c4407c063489a1
BLAKE2b-256 2ffb86139ea3001ece3f61af6e14eb429ccad9a07ce715a0c952fd143550f30e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bb9c7a7c118b32ba4214b9f9001072844f6f448a820fa1baa0461606b1566c1d
MD5 1e75ea47762c0aca581205f5952b8a69
BLAKE2b-256 38f7b19399d43186d1a05ca60dbb9f102e45d27f983d6b8b3137a7e073833124

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 09e3689aba1c65515e6faca442535ddcc11499d883bcdab50f69f9980964d775
MD5 507558566bf98cf7c813eea1a0077e43
BLAKE2b-256 c7d9ec13f08a5c47ba558c839f1e99637961c9121aacaaac92b25d0a41de6ca2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf6f15d6460631fc51b8ebfb6f5a11252dd738e9cdbb56873c31c93a13cebd9c
MD5 957b6686219b5db01e05cd14506bbc47
BLAKE2b-256 0c86ebe9c68db5d41862cf4d0ef868665a0639bc7afe558f2bcb425d564cf02d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 527c9bf1a89001129b00e4a9eaa4819b84b76427e42a6dd04ca9415b7e8e7fe8
MD5 b68a2798d8aee63bea14215a6fea802b
BLAKE2b-256 c5fa599b284f4b0a0d3d90e65bd55baa3659474fd957b5830c1a235cee3a8b58

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4044eaf98980249f8f7e3118e89166105c1e052ebd99be771ef485c73594400a
MD5 ac83551ed116b3a8cd0deb2d61ee6e7a
BLAKE2b-256 fcd697f999dc2bd318a701121846c9a0289d0b6fe32c4f1be6684f04c6a4840a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 89dbb1a72c4d6409f03e076ca3b1764003a627db5860273696743a36dadf7984
MD5 2b2e0a182b6698546fa905e4ea363e06
BLAKE2b-256 004a987c8647f8397bd994f39b33c6af2f2e4d463d0a06a501bd07ee8fbbe23e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 462.3 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 5aae9e8b5e408091e12ed5e8a791191ace6ebcd603e870cb0ce0b8ae420ccb17
MD5 6bf874855914b26b94cb03ea458ab53f
BLAKE2b-256 66f3bae3dfafa239e8859df00798fb1113e8943c94c8161aa2e8333cb8817144

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp311-none-win32.whl
  • Upload date:
  • Size: 438.1 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp311-none-win32.whl
Algorithm Hash digest
SHA256 bd909e840657bb01db841098a5810d09c967d0d5ee5918986a9f64a31c7d0fb4
MD5 257570a060a2a3eb09519fad2c83914e
BLAKE2b-256 8bfd705babba20e7dc51a93fce498e1458b4e92d5094fcc3d66bd0033abc82db

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b5b8466ff72d2bdcbc2c398cbb2d6dfcd4297dbe4c250550ba42cbf94d4e4188
MD5 8fbf1b6f394e353a138c79d8afa23786
BLAKE2b-256 5645654c3098907070771b1286c9bfafc73511bc97e9fcfe252b313f4ceee942

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 5a02d81742f91ff65606222f3a7c3a5227c3555cb4d7cbe31745075e45cf3108
MD5 34df034bf14ad03e9f7da72af35158cc
BLAKE2b-256 5429ef44636d3585ebe3f112e50533ca4b4035297dc10db0dc6c3ff0946a9003

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 c9d9da4f2b030763d0529b23227988b148cb316da55775f530e57b16c1afc645
MD5 f5eb1e82868fb55bc237ace44646e3d7
BLAKE2b-256 01b5a46def9ebcf5272b8a71f1c55c6a3ec732b063e73a79c90583806350a25e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 9cea6bc1c629349fd733c8838dbee8134dc287115b29fb8abd0cec2f86ebfe85
MD5 8d6a2e4760a426e6bd610b7252eaf26b
BLAKE2b-256 803e202f80760ad47d98292703b1e3fedb4d02b9898b256a8a8a1fd59c24c27b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 dc48b38120159e98289da6a73166eb6874a39dbceafc5abb79fc7003a60fff0d
MD5 6bbefbec95c758a587c1c1c394fa41c3
BLAKE2b-256 66405db52afa7897d93ec5a4e5baf8a8938ea67c7e5f726ec24713d16841842b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 30f586d267028ea5dfc57cc4d103b031e5960f0d036e7297da376e298650e29d
MD5 b034dab53e77d26acc6afa0417b23f73
BLAKE2b-256 76ec6be6c9936a0fdfa6106690fa36606400a92f8a4dd32214ee1850138b288b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6789107b813ea123a573ef7f6ccddda0c688b48f8284b4593642cb42718bc9cd
MD5 e84812a356392b1abdc0a59f24f59eef
BLAKE2b-256 27be788e50c631d20558263cdd1eda7871af2bc1e88ec3edf045f80dc906e78b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 925a20a48de10df57b39fd31dcad6e5441e84cc224c2f976cce6f5c58d0bbf8e
MD5 e22f190578b716af8d159b1b94b57519
BLAKE2b-256 59800a48920d9fd62b097feeff3f00768e7b09ec8330ea1a85a07db8b93e41d1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 462.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 a2e65be71e39e9d2bda91ade50f0cc27bdfbddab0b6051f95c2ff86a7531a0f1
MD5 0ac023c3e742df57f201d36e590c804a
BLAKE2b-256 ab897ac084e8db426ac26884fc3778f75fbc91c2ca733d4678c511a5c1234018

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp310-none-win32.whl
  • Upload date:
  • Size: 438.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp310-none-win32.whl
Algorithm Hash digest
SHA256 2a97ab27db8ac898a2c74bf2ea2321928d8b2882a7db65620c0b6bf31451d421
MD5 13faafe334c9f63d7775f402c359a3ca
BLAKE2b-256 5d42faa8537b4f64556d7fadc25c98794cd30d596161f8439ecff74a57cd8c38

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89aadf9ab00be551b93d15aa63e642d61e3a91e5a3573a215776c12815b700c1
MD5 7189f45d50189eb3783a30c1cb60165f
BLAKE2b-256 2e6d2debf21fe03ff3429ff1d426711e4ad4b2ac134988dac12987ce64b62ebd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4eb6d97ffcd9eda8f1a1cbf32b731789f4c22ac96896d3ec7b5bfee3eab0b295
MD5 5eac8e66f948a4c63121efd705ac3941
BLAKE2b-256 d99ac6b909a8d4b601d34e6051833fc19512eb41e8ba9eaf03fe2cbcc28b5c6b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 9f6ce9e20a8d1f2e129c6b126f332da8d8a3984b89a533c7924eac251161dd04
MD5 5ad0aad17a0109a722386ff132590484
BLAKE2b-256 ac27b3a6617677e0791f8f3c49faa9215902ef0ad156226c411b7e2f9d92cea9

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 316e52065274a7c32aafcfef4db9d9f84143d05089e537b751d55b3531e7aa9d
MD5 65153c510c42d91a338a9ec88362fbdb
BLAKE2b-256 7a66a6ad44eb1e78031dc8f1496d75f7d2a938032e05930368f03252ee88fb4a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 865ef86529318b79cf370c3d4ccbaa6f48271b722fe778a7a1d5efd6bdf7175e
MD5 88119c21897442345b2e592417f579a2
BLAKE2b-256 52cb85f792982698098a51a2e2bd7e3e984ec9cc641003aa57e49a35a0bb7514

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6b99cae3f6733417704bb321602f519aa42eb39fc47bda4adf357c968e47934e
MD5 b3f9dc0b7710972d2d17afd521d3eea0
BLAKE2b-256 773a54a2eaa15531e157e5a57f904b43ac7e240af4ead9ebaa5b51c13bf0f3e6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 db523d8ec410315cf734802e466a8896497b4b6262f8d1462ccbc1361964f35f
MD5 a6236b9d672dedad0520b8cfd0e302d4
BLAKE2b-256 5c6440791e138364b95e01415898aa250a33e6126944b38c5002f4b77e7a0efa

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 57ff1c469ab222ec6206eb25a52ceef176be928e3a1c5a7b03293a9035f7cb1b
MD5 61f8b830469e0847ba1f709aff6a7770
BLAKE2b-256 d448fa91363e23b7393af3300a9f7cbe1b12a83ef0477ca264ec8c103dfe6a9f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 463.2 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 d44732457c6039257ca02db15861221f07fa24aef92261cdfde9c4c33259bdeb
MD5 80f26ddf4314e24749ee7562473800eb
BLAKE2b-256 6df61de80798be33363d9cca5b03835bbc2640d5313a3c1e9c1e6390df64c871

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp39-none-win32.whl
  • Upload date:
  • Size: 438.5 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp39-none-win32.whl
Algorithm Hash digest
SHA256 0fe0d91c70ba386cff5ca4f34c9282ce659cd1268ce9fe8e7c027d37c4e8682a
MD5 2b589582d0c68a2a91aa3978b6b542eb
BLAKE2b-256 e1bfcd743bb2a91f69255b26d76399312f33525b3b494194c57a852a6f51c35f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02bdca2f7cdc746ef7d212192947942212b8148c9bbe91613c42d5a5b6c8ac34
MD5 68144ee24c8d451748c073dd7c02d6ae
BLAKE2b-256 af4e9529233a78857a5a04278217437d809fa5c21105f9f4d10546e8c4d84a5e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 def8dabfc28aa5984545651f772e22a05d43aac9e8b63ff7103936dc1c1f2538
MD5 e9b80dcd3a732b0910d52efe2b538875
BLAKE2b-256 8f9fbbec5608bf0c6b0cf2ac33807f137ee1b1900eab1bd4efbd3eb8cab49a5b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 cbf8521be0dd4a4186a9f404d5ef760d763b1c8e9c8a8781928a91fff5d46c23
MD5 67c6f9ee21f62a4ba035c6345025a995
BLAKE2b-256 f766a252e246d942ba81ac427057d077deb2daaa4d2e0cc082ebedaffaaf2167

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 d766b777cb8be8c74ee347cf9af32514c25eef1a67fcad7e74aae6a19c8df4c7
MD5 7bff6b30a2a9c4e029b4cd15767e6db7
BLAKE2b-256 e51e5b3a6f3d79c7fe63594cc174c255201d0e43ce1dd99f56a4a45eec33c16a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cf50a65a5ece11e1d124d8d86f12b8f8a7dae8e67e3936c3b7e984b0baab83c1
MD5 b2b8ea017caa90fb26a93c0035a91e62
BLAKE2b-256 41436a967ddd508331eac3a6fa248d7cabe802b1ce082a267db3511b7033cc2d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 9162b5a11ccea3253c19b7cd63eb052346003d077bcd5cbe31d68071e734ab40
MD5 02317b67c141c8157b36e8886fc61772
BLAKE2b-256 b50fd42c6c0612e958b5f1e6235d30e6b98ffe247ceb5922ea09754b98d61be7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d7055ce2c27ae1b3b8f4aa2dc90dce5989fa66981593069c3390ac0e3c8d8cbb
MD5 35e6f804d55f8cfeedcde103bdff6c6e
BLAKE2b-256 5c82b84d3289092218e07e384796d5a60ae897992de16c361899ccd05ed2aad5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 e29fb02b113582b014451e2420265d6958f309f87c938231e37cb38d0359c071
MD5 c1a4b14842bd0276c6c8d7b81c8a6494
BLAKE2b-256 1b4075f14ee5cf2b0e73f3b00a811ef302d0884e74695ff3dd4b5b6046fa364a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 462.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 fac1e5886b2cf68704dd51cfea27c7cd4744c234b9f88ddf0adf888b685bba0f
MD5 3dc65e88829a889c5c847d350d8f87e6
BLAKE2b-256 8c650d834679d126febebfafabcaaeaf440a885af8a812d22f67abaef534de83

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp38-none-win32.whl
  • Upload date:
  • Size: 438.3 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp38-none-win32.whl
Algorithm Hash digest
SHA256 c538ae541b413ac6351950aa0077dc0e2ca46b3f333ba2407f714afbf0af7ba1
MD5 aef6a78a1778c20f916516076cab519c
BLAKE2b-256 3775345f6d9e78a9a28921fcbcbc20198e6a6ca23f90fb8b4dce984dafe746f9

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 11539efd13918edee3b12a310eebc451110c76d3f5bfe0c35afbc9f3b2ae827c
MD5 b8f1d80225daf50871da3a4d780239f1
BLAKE2b-256 ba968ade34e34250ee5d1351115bef5d2ad44da89ebdfda5108a0d31bb4cd1c5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 c4b8a1c31536a98cad6a0159c5bcaf9fef86721f6a415c486793171dbc7db0e5
MD5 f2737336ff5a6c44ec065c0a9dae7ee2
BLAKE2b-256 7db25758dbb77f1b566992a106c1d02d3a50d1f924752e4603667e42050ea1f6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 32c3d61dea13735750ed685f0f8dfdca402e81dcf87f55777fa36fc5978dbfc1
MD5 e7eb1bf4c845b74478967b3ba90e8e7d
BLAKE2b-256 17d072946c77c0a8002f12f77c10cd760467d5cc3f2e2b3c4a93492683b18958

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 4d432972970028dd1732088cf98ca52ef15add5fa90cc03342752672053f2009
MD5 073eb66cca55053daaa25e55a1a13eea
BLAKE2b-256 d7852b4946144ecd14d723305f04233df80123de091b8f9a11e0e9da7365d27f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f254cfa2f2007920b304f47f9bc011cdde2c41e851c2e24206b0d8ce00794807
MD5 76db30b6135b4418f8588eb91596fde9
BLAKE2b-256 9126b71c80a9aa2f2adc3f502df8747a3ab0b0636883ddf3698cb7cfcdf9c47c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 33350b20f17ae0452291a33f81b41bca04c70a2bef8bfa86b65732a0ced6f137
MD5 972518c0f5d2694e86a549cc1db0e2ea
BLAKE2b-256 e9cc83b35020c7f45b78880a2476dd954aff0d82b0abb26a9bab4a2b2bdaf086

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8fea7e3346fbbc190eba3865b8e41562e97ffd08593eef9e6b9c6428ccc49f36
MD5 20cda9decc0165c5f63ad34a4accb36f
BLAKE2b-256 84b7d83b5ca828605709b161e189784c0aaac83a2aa000983116d209ba12d641

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 89a2fd7acf23f505afd7d62872902bb9fda5231539a28483e1ec6b698fa22f34
MD5 2b963b5531ce285a81cb718055ed88b0
BLAKE2b-256 0c4f5cc20ca7d903996668387813997046df1eebb8e4b9acbfda6f65e7776c77

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 462.3 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 efaa129c033ce2c3e71154d25a6061121ff5e05200cd27685a128b4d4b0f2117
MD5 224aa56c2e36f64fadab38f83ea151b8
BLAKE2b-256 9fb8116574c8fb189784fb55680a0ee16e2aa6a6ad76ca9909ed9fb7129979e1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.2-cp37-none-win32.whl
  • Upload date:
  • Size: 438.2 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for pycrdt-0.3.2-cp37-none-win32.whl
Algorithm Hash digest
SHA256 32d1563acd2af63a4853eda9f5a430e5f3b16aaf32786b6a0c78fb539936196d
MD5 c442397435edcbc112f1bd69653c0711
BLAKE2b-256 729278a1ce9f0ccc7a8a0df75eba2875064fc9a10be9e859c9aa7030b8259a8b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd1a210f74293dd10ce0f5460f583f823518ed45f32c96cb7de599a3a23d2ee8
MD5 91efd054b3f45b0ffb77a6f293ebdb3b
BLAKE2b-256 74375b94fae8f0ca4f5bf2ceae7e97c8535b8ac5d00140ea17de0792c22283c4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 17d82ae2f62e6bbc51bcb93d1881ad4157ba466251a673aa12bef7c1334ac9eb
MD5 4ab82f6924a7c197d73f41d1b289a3ea
BLAKE2b-256 d8d7753d9db6616b5f989d655de551455bcca369c8501d7bc36889c532848f31

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 2cc90f74530ae6f7f9b7e458591e7a92444d5874dd38f39a9598e537ed6234b7
MD5 c04ea44462b2e57a2461df762caf365e
BLAKE2b-256 113d5cc3cd735095924194426f0d034b881578257205c4fcc016ee54da3a428e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 a39f545a86b3d09a4ea55a34ffaae589bebfb32334a71eb89fa3a5106ae31a0f
MD5 916b819a968635b9269c832e7ed777fa
BLAKE2b-256 3867efb273cdbbd56e4e699bcb7bb6d9ff3870dc6c8fa514d3680c4e7fb0e176

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4d6a4f7bdd048f34714b720e6891d486b6412c915b663300da46b43fdf5cb78e
MD5 ebc09cc474fd0248b64527f13b0743cd
BLAKE2b-256 f03baf5c33e8ae97e001cbabf70cda181c019e9a8a80e2e8b59cb5dd648a8141

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 465bf5ba5c2b0550591a1012461f381dac25c47d6e1fbaadb3ed5e7ec130e7f2
MD5 07046afa576d840e56250e6ee64b198c
BLAKE2b-256 d0f02e619f6dd67b4c121dc45574c220fb62b97f55eb98b16748d543adc0172d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.2-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 46d1d645c8d1da863efe75676d463d08bdbfb7dd4d4819d8ed7291e8b677c88b
MD5 db2e32acebee5bf58916c71a7a62a97f
BLAKE2b-256 3393b0bdc4fd32cd6999e11ecf9e3da4d0c732f9e13df41df288204f9334e156

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page