Skip to main content

Python bindings for Yrs

Project description

Build Status Code style: black

pycrdt

CRDTs based on Yrs.

Install

pip install pycrdt

Usage

pycrdt offers the following shared data types:

  • Text: a type similar to a str.
  • Array: a type similar to a list.
  • Map: a type similar to a dict.

You can initialize them with their Python built-in counterparts:

from pycrdt import Text, Array, Map

text0 = Text("Hello")
array0 = Array([0, "foo"])
map0 = Map({"key0": "value0"})

But they are pretty useless on their own. They are just placeholders waiting to be inserted in a shared document. Only then do they really become useful:

from pycrdt import Doc

doc = Doc()
doc["text0"] = text0
doc["array0"] = array0
doc["map0"] = map0

Now you can operate on them as you would expect, for instance:

text0 += ", World!"
array0.append("bar")
map0["key1"] = "value1"

Note that an Array and a Map can hold other shared data types:

map1 = Map({"foo": 1})
array1 = Array([5, 6, 7])

array0.append(map1)
map0["key2"] = array1

Every change to doc (a modified/added/deleted value) will generate an update in the form of some encoded binary data. You can listen to these updates and send them on the wire, so that they can be applied to a remote document.

We say that text0, array0 and map0 are root types of doc. When they got inserted into doc, we gave them a name. For instance, text0 was inserted under "text0". This is how a remote document will retrieve the root types of the document, after applying the received updates:

from pycrdt import Doc, Text, Array, Map

remote_doc = Doc()
remote_doc.apply_updates(updates)

text0 = Text()
array0 = Array()
map0 = Map()
remote_doc["text0"] = text0
remote_doc["array0"] = array0
remote_doc["map0"] = map0

You could say that there is nothing fancy here, it's just about encoding data changes so that they can be applied on another object. But this is where the magic of CRDTs comes into play. Their algorithm ensures that if some changes are done concurrently on different objects representing the same data (for instance on different machines), applying the changes will lead to the same data on all objects. Without such algorithms, this property doesn't hold due to the fact that changes depend on the order in which they are applied, and that they take time to travel on the wire.

The most common example is inserting a different character on a text editor on two machines. Say we start with a blank page on both editors, and the user on machine A inserts "a" at the same time the user on machine B inserts "b". After receiving the other user's update, if no special care is taken, machine A will show "ba" and machine B will show "ab". In other words, their document states will diverge, and thus users won't collaborate on the same document anymore. CRDTs ensure that documents don't diverge, their shared documents will eventually have the same state. It will arbitrary be "ab" or "ba", but it will be the same on both machines.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrdt-0.3.5.tar.gz (21.4 kB view details)

Uploaded Source

Built Distributions

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_7_x86_64.whl (661.7 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded PyPy manylinux: glibc 2.5+ i686

pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded PyPy macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_7_x86_64.whl (661.8 kB view details)

Uploaded PyPy macOS 10.7+ x86-64

pycrdt-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-cp312-cp312-macosx_10_7_x86_64.whl (658.1 kB view details)

Uploaded CPython 3.12 macOS 10.7+ x86-64

pycrdt-0.3.5-cp311-none-win_amd64.whl (462.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

pycrdt-0.3.5-cp311-none-win32.whl (440.6 kB view details)

Uploaded CPython 3.11 Windows x86

pycrdt-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-cp311-cp311-macosx_10_7_x86_64.whl (662.0 kB view details)

Uploaded CPython 3.11 macOS 10.7+ x86-64

pycrdt-0.3.5-cp310-none-win_amd64.whl (462.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

pycrdt-0.3.5-cp310-none-win32.whl (440.4 kB view details)

Uploaded CPython 3.10 Windows x86

pycrdt-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-cp310-cp310-macosx_10_7_x86_64.whl (661.8 kB view details)

Uploaded CPython 3.10 macOS 10.7+ x86-64

pycrdt-0.3.5-cp39-none-win_amd64.whl (462.9 kB view details)

Uploaded CPython 3.9 Windows x86-64

pycrdt-0.3.5-cp39-none-win32.whl (440.4 kB view details)

Uploaded CPython 3.9 Windows x86

pycrdt-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-cp39-cp39-macosx_10_7_x86_64.whl (661.5 kB view details)

Uploaded CPython 3.9 macOS 10.7+ x86-64

pycrdt-0.3.5-cp38-none-win_amd64.whl (462.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

pycrdt-0.3.5-cp38-none-win32.whl (440.4 kB view details)

Uploaded CPython 3.8 Windows x86

pycrdt-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl (1.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64) macOS 10.9+ x86-64 macOS 11.0+ ARM64

pycrdt-0.3.5-cp38-cp38-macosx_10_7_x86_64.whl (662.9 kB view details)

Uploaded CPython 3.8 macOS 10.7+ x86-64

pycrdt-0.3.5-cp37-none-win_amd64.whl (462.7 kB view details)

Uploaded CPython 3.7 Windows x86-64

pycrdt-0.3.5-cp37-none-win32.whl (440.5 kB view details)

Uploaded CPython 3.7 Windows x86

pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl (1.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ s390x

pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (1.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARMv7l

pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

pycrdt-0.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.5+ i686

pycrdt-0.3.5-cp37-cp37m-macosx_10_7_x86_64.whl (662.7 kB view details)

Uploaded CPython 3.7m macOS 10.7+ x86-64

File details

Details for the file pycrdt-0.3.5.tar.gz.

File metadata

  • Download URL: pycrdt-0.3.5.tar.gz
  • Upload date:
  • Size: 21.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5.tar.gz
Algorithm Hash digest
SHA256 4bf043c46bfca6ec56e4b963ab557410334157f3eb1bd722ba07cd75eff689e3
MD5 3e191a387bf31e85d569b4b071b74239
BLAKE2b-256 ddd94b2e774bdca9848d6d451e1bf33614e54a3c2f3f6d8dba1aab4a317adcdf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 20b990fbfc0ab9b80f77d53bf2b1c6c1027bdbca5311c27bd004b857fc2d6ad2
MD5 1d5ffb4d11164db994b9b1e6c8e7dd28
BLAKE2b-256 fbf96bb519aa247899775cd395eca51db1620e1d4e2f734ddf9d9259a745f8f5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 262bf3659c3e91229c8c2c8a97e8101fa62c9d091c6cbd306f5043823abbeccb
MD5 cbd65fcb241dd030034318ed60532415
BLAKE2b-256 ee70ba8fb6f311e498b50048e13f5ecb8376eb2f1628bed65f924109087e2ba8

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 bfdb7a75aa8596cd427a1e94d55555effcacfa01a3bcd140c0da87d32cf3e3a3
MD5 2a3e1649220b0990710a023a7a2c87c0
BLAKE2b-256 a8f85917e575a72af5644de11a2ad8953bde5afe4ab6c37b3f910825805e9611

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 8e8765ae58fda4edd9a4b36553038f38dbd70455a96726fce28a5b0e4657853b
MD5 56c4c77198336aa437befda76107471b
BLAKE2b-256 1df641e2cd521a5db6683633a06b799a8902c1a55b843d2b6a89b99d3c1526a5

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 c297e19139ba99588314190e37bf50459d0de65a517160485503f0f2ccfb6b11
MD5 4ba5144c8f13cedda942bc7c5fd28674
BLAKE2b-256 0ae2ab14c91e56eb0d687845f403b1dc25396be50b98b974de473553cfd9b4cd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 56fd0b7139883598dd15f8e18d8536e06cb259bbffd7280cbabbc10526a5518d
MD5 da6331f0cadb38353d18a2bba3e09d52
BLAKE2b-256 befbcb134cdbafad23d34efd18edb49a375c2770a62eb7381f3227fe270a88cf

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 80399f41d69ea553b95b796a0ef7c67b826348b4a9ab78883a90e6c93d8b3088
MD5 cfb80bc16c037e6eb1eea547814d2f59
BLAKE2b-256 fc156cce44ea29d6b201ab72a86c7455c4ffcc092dfbfbcc1122e0b85b5884a0

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp39-pypy39_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 1bfa952b994f56b8b925c127e67587eb6e5918591d7adcfdc8943048d8215270
MD5 f8dd911b04bec5944a43277ce29e8b1d
BLAKE2b-256 b83b94f3cda2d2dc3a86b675b33079e7057dfe6f07de4753b35d328e905c1edd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 036af8a89daed7cda46537fa8d8beff16ca035312f0c334eb205df2e0b857c59
MD5 e8da419a2d1d25d19a90a63c10813ba1
BLAKE2b-256 d8e5d15257223f0d9a71d60a2bea15f263038f37a78183285372c33db7de2e7b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 07cc9e13c811e255fecccd70fce50205743d5d613910c400fbe42cff8392af91
MD5 fe9aad9de5ef023434884f565e2ca7f1
BLAKE2b-256 980f1ce900de47452f66222110500d3dba66b4d8dc15b61d24baa269e308ef04

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 01265165f08a821dd0f44a58e05e6d2a20e5e4e8d9a1a5c3739dedb3740106cd
MD5 017e6209b0c3f1bf10940bd9f59194f6
BLAKE2b-256 e524a6087c9fa402bec4cde137c6f3f90f8acb13aa89d70144a7cb22a3519eba

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 758fc6af9d0997a4451e131fc39586d4a201a5783781f6dd6365dd05ad7ed9ba
MD5 8b0129f6d57005708625be72fffc5fea
BLAKE2b-256 03c2617f4b0bd4ea3b642bdff50147eab9e327267fc299cedcec3ba48af480b6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 bc4aa43852a1550b431353a25d54819a81668624d3ebb416664573ea51f89c37
MD5 15707effe5bcaa4bdb0e3c3650d00dfa
BLAKE2b-256 0935063311923641858da96171354dc23cef8cf2e02e134cf2d81ec7288c47df

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 e9a4b7ce2c39acdaa14f40e9c7ecb25b343e72c7e045b8a77f1d8d6ffcf6eab6
MD5 efecf64f8b685174d177a94dbfaa3fbc
BLAKE2b-256 ad11cd95da8ac4802e051ecb8214b1f92f404f1ebb0bea17597b79565910f2e1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 8f289bb9c63e43062be52a64d05ac7169807e4b223ca7223a6fa60ff6805dab3
MD5 39fcb940ce0271ecc4e0cd8907bbf78d
BLAKE2b-256 c106c8278d506ca5e5b82895ea9f1bb8e7ccfab4f694589cb4bf02b6686ca6b2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-pp38-pypy38_pp73-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 452604d58f50b458057348fd11690e7945c0b6d200deb1053a49c2a0492c8e2b
MD5 da68f6c59fd41babd9de73a7c68c236a
BLAKE2b-256 3be390f11bdbce65f450e33e24acfc6850e44ba49ad0526d3a3ff41dd1ba570b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 261d739c479bca9452a113d151622a459fcd459b7c4c5090d19198a2d2331b65
MD5 8ef70541c9af166e3eefa215c02a6363
BLAKE2b-256 674ae30482c96c17f067005612952ae68b258bf9a1cf2b1f5ffa1262d6f0051e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 6c2895ea7840c796f1fef47a3ed79a2d9d7d5ec3ae013ac1b89068e56045e5ca
MD5 02bf1afab8225751159f4c3c59243aca
BLAKE2b-256 a75849a46ef1e2e86eeb431c91b357080f23ba87e2725cb2debb36f149795e60

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1f01607987d7ba9bfc41eba90f88f7960fa99bfc7d5a4ada45206f3433ddd7ba
MD5 ef3393f57f2f0e9bc107fd7dc0578b8d
BLAKE2b-256 b62a9aa5f61262422a6098aa943cd35dccea823533276c0a50fbda46015f3117

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 eb33b6bd57f5cb7aaea3c1e6a9e13019421bdd24ce6bd31f1955ff5fd3b712ca
MD5 901687f979f827fb7d701b6577e5019a
BLAKE2b-256 0715e4cf64653661d330dbe38d4880372b72d9963723e7a4177851d50c94d47c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cb77181b5a6647287a08fca64e81713dad57a10ea8b090b20376091e642195d9
MD5 3283582ea4cad518757cf7899e12ee33
BLAKE2b-256 796a2c0212f749a6dcb425b83ffce00f7fc5b5caa9dced3a0f5404a57000eb4b

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 cddf8645b61b3b3154d14ff9292e4e51f8e5457d87ca544552c187f5f6b47650
MD5 8e9b81c2c6f0cfa66cf809db65d5f9af
BLAKE2b-256 7aa07cff7ded27841cdded11dd889ab52a8b558eb66cf8a3ffd524e7a3d919fe

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 6447b72ba137d88313a0fd090eb26cd3b1ac6379edf110f8a22b80c459476338
MD5 91a6a16c091927a9512f18c59ed1860c
BLAKE2b-256 419599d92599723b1fd4bb5fc7062a4596ba7f246fecce085ea24a3ac02c1a15

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp312-cp312-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp312-cp312-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 9d611270d86eb87f878520820c45063a405e12670fc65386c1c01f03af4432c9
MD5 0c2e9b3de2feb73b1cf444810084713b
BLAKE2b-256 0f3deed8274e220e93706320404174cac0b7f2d53248372c0acdd2687b6de522

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp311-none-win_amd64.whl
  • Upload date:
  • Size: 462.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp311-none-win_amd64.whl
Algorithm Hash digest
SHA256 b927edf70fd9a4eeb4b44e9bcd3e5986b3ef95c42fb1fb6434c3d63554f220e4
MD5 83d92e176b0b20660201accb300b836a
BLAKE2b-256 15977f4b8ac203c56e17c00c0b5de3e7cdd29853a31f4396829793d52e73e95f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp311-none-win32.whl
  • Upload date:
  • Size: 440.6 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp311-none-win32.whl
Algorithm Hash digest
SHA256 2c8a74f1f5259d7004cf1d39477ce10730c15e23c48cd594b4453819dd5cc5ff
MD5 c7957797163d565f7a53295a659bda69
BLAKE2b-256 eacd6240be225295b6bc9c457075ab50196268b93011696f8eb3d47421f98352

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb0be92fef866c7cf7c972e4d5ef615e9523820a867ad1a6c2e032028fa9d07e
MD5 cd35616c9f9b1113370858e050b089c2
BLAKE2b-256 e1352f80c5dfec7dca1239c0efb86825fbfe5f5a752e4ddbd2dc89faea9f455e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 7256c8a7bc35ca6d57f770e478ae9ae3de18a5f87726cb1d5547ea4dc9b422b1
MD5 280e21efb8b8af43ed369322912e6376
BLAKE2b-256 1813af0d9cd89f5a93e9080209de5d20cb650b6b29a82956607f2b5b97d4d4cd

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 90c1fc99f31b99144fa54334896c74c89e589f9e0144c53340db3ce9f10d5eb7
MD5 25c1954c66f4b81b7d65dfe01c9ed02b
BLAKE2b-256 965801cb87e9f31c13cbecda682d26327b9c8ea05c1f59578cc3edce5d0ae9b0

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7c2264441883510160330aba4d6c7f0a51cf80195f9740532cc0c6f36f4d3349
MD5 eb7963be18b7a2a8191cdeaf71534704
BLAKE2b-256 9d3afbc67e0a2359d05ef6d3a612d812d1ef8e1d47f10eb4abfbceb3a8a16ee7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 648322331bc7a86819d1a82a5495b6368a5eedf4b2d559b59d8a3d8319fbb28e
MD5 f19241bdf94fdfc39379bd22f105a105
BLAKE2b-256 a9bf649f401631fe3c304b76de8a69db533e612144bca32210ba4d78d2bdba8f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 cf8e6e7deaf1c83372e696e32b53cf3be23d257981554c5cf015d0728558401c
MD5 4cb43b5de8a80ce0c5ebf0195e33597a
BLAKE2b-256 ba8204cf872f37b89dc61e5206458b5308d3aa37d3a59762396d191d867c8c0f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cab47f150d8b0a26e09597ba8968bc23cd76f08e7f4ea817ab771dc44b267450
MD5 86a6c1303f49ccf59f08c2f06a197dd9
BLAKE2b-256 d9766b4236e6bdfca30d99f6719916259cc311862e55fa0bd5295c513dc0e09f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp311-cp311-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp311-cp311-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 86ef5b60a86100688805eb12b5b42d632ed51694aa20301a0f3f0b7207b8ba54
MD5 a992230b4a2064a0cd01b319c1b18577
BLAKE2b-256 b99b2b3a4ec88607b1fad2c2c82675bf675fe7ac0b8d13556d751d329b683d4e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp310-none-win_amd64.whl
  • Upload date:
  • Size: 462.4 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp310-none-win_amd64.whl
Algorithm Hash digest
SHA256 99d36f6fdb80732eb18e30c47744d308f912409ed0e8e871523710fe06da0372
MD5 ca40727a30b14fedfd0d899380943b75
BLAKE2b-256 8e96a92c3315da65f56b807f2f01ffb298a8d8f673449f43f9b62e28c3c743ae

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp310-none-win32.whl
  • Upload date:
  • Size: 440.4 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp310-none-win32.whl
Algorithm Hash digest
SHA256 6dfe444fd8bd55eea59f37f9ceb96e781281bdb4ce5b3217882b4f1415acc672
MD5 87b3c10c1101f8a473fa206bbaf5527d
BLAKE2b-256 ace60c74bc618521432e65874be010c44b912b5f75970a46496df55be7b4488a

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 43bd43bd069aa518b4662345c1af79eaa5e3fcc02dd97b8c6c52479cdcd98359
MD5 a1a7f94ae3d00ed0a1974bd53f61d275
BLAKE2b-256 f0ba05bc53d3c608112e471ac775d534caab64cb44bfac6a24bd4de580e4bb60

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 3d3aa10c0c0e367c972663adae99497089955ce880355f3d25e15fc462396e45
MD5 8a41e503bfa681664f53e07d2be389a7
BLAKE2b-256 06bb2e9a658f3167f23b531163fa9c5e4fcfc8b6f3317dff2331982a66e24ea0

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 32c405d170397d46096066aeb5c1080ccf9b544dc24e2e07292455f72ef5c461
MD5 f36237af397dc68ae336880ef34fe058
BLAKE2b-256 cb2e52865cc4836a45dd87c1725921c084d78a6dedbff7adc8c439977cd1368c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 7042f972f4a02dfc8c4c2d10c7fe6929d182c194e738a2b47e47d63dea17e49b
MD5 1b7aa8dec42457a8f1e489409146a6a5
BLAKE2b-256 f09857e03d079c37f50423804887fe21b92f03f5df111d930124aa62f45cd6ba

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 3986d1c6c1f366bc02b0a96c546ca028a37d6a6b6281b3f2530ede26c30f8fb1
MD5 9b439042963db908116193253c6d5791
BLAKE2b-256 b117e1bb989bbc218652fb7f82897b9c01e5b9b51f79adc6804c0c1ae150422c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 11ad933f08898d80c80c4986b26ca07d4de9728bbd71ca2a5ecd1e8ad8618790
MD5 78b5dc329da4c43112d89e36c3fbbf55
BLAKE2b-256 e80118e6662e26942dc9ae87b9450cd42219b93494891f8ee825142f958c3bd6

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d4f488bf0c78793013f137e4379878634a6aa2a05cca38531f2424ea9c5f6028
MD5 ca63ba8efe772c41d58a3b7a9d76d429
BLAKE2b-256 751e0f71d0ba110d4d6445872ba8517dced7e0bace0ec4d89d44be5ed9c29a2c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp310-cp310-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp310-cp310-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 40bb55028ab130b8774f3ad828dd0826ebc784b2346c9bd50ec0802b7597a2df
MD5 17da3c096b1e6bb574abb1b458f47505
BLAKE2b-256 ab94161d127afc2e5b7d6fc1c9894ab9641aa80e1e4a54eeaed07122c1e7866e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp39-none-win_amd64.whl
  • Upload date:
  • Size: 462.9 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp39-none-win_amd64.whl
Algorithm Hash digest
SHA256 7de687cf7b4430c2002234753e1589afc630262ce6bd5817bd424c68a7b64e68
MD5 94acf01263f6c95e927074fd0703c688
BLAKE2b-256 284efdbf86033baeb0c25624d3d35385125429c6cbaf81da155221d92f5d6975

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp39-none-win32.whl
  • Upload date:
  • Size: 440.4 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp39-none-win32.whl
Algorithm Hash digest
SHA256 3813e05818622658cbc05c464364f0479336e9ddbd6b40aece9ea9001cc39cba
MD5 ed576c2e063fcc6fa6d4af0d149e1e36
BLAKE2b-256 dc65131b51b365982892ea5c84b58b7375042443acbf32a452e99bfd05d0c515

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a44e4301f34af67ac0e85d9a314359bec023b9bb56c3f4de290799219441763b
MD5 53c238ac95f6f98ba00d39b98365f905
BLAKE2b-256 66f2eeb792eeffd1cf896c27f6dd5e5beb95c5667b0a720488042fc8613987ac

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 0d53454b8e7dc281610424088ef0d4b73883d397982933fa14114e45b918037e
MD5 4824f637e0f9a2ab3f7d9954f204bd4c
BLAKE2b-256 b4975aa792205a5870b8c6a2896bcde3a8ea7923f640d2ea56d733a7009266f7

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 09e9f5d0dd4efceb8bc29fc39c27399ee2baec155f2f45f92f6f813bd41d7f40
MD5 ab5df7895ca810c80fd8ff93c6148ccb
BLAKE2b-256 811f14522972a7b6a7e2d12e4de5b272808d30940b455d42ee4954ffec822686

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 1f0e5b11e182966b2e0db42626e1001c317fb167134fdd93aa6ae9a5357084f5
MD5 e8cf77109c9b0534bf91d768bf689648
BLAKE2b-256 22779c71db1e08949f396ec24a1b815cebb845ccea87f1ec5eeca33ccc363a64

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 20f36a01c3b94f996b245bbc872c92dedc86a0b088def9c018e9f3ad2222d91f
MD5 b8437a847555608c157bf0486008c251
BLAKE2b-256 84ed1c591671941ccb048bfd3655233a73988369dfd37a6929acf97dda7a4192

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 0397d964009ac3f4232c765d1a23df4c5990654b04ce054bcbdf8377a8503380
MD5 595995b48b37564ba7a287bea7e11a5c
BLAKE2b-256 73e3010280a12f6f59eb25f293404b010b33bff64fc48311798d0c63c2e9ee5f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 58d12aeb81bea202fcba72a30433d5c640995f453321381381b31d8efe2d50b0
MD5 091e547f85643a6dbaf1cb91958345ac
BLAKE2b-256 4d378026e6f13c4cbdbfbb36c132dfd92ea12dc73328a7f7f2ae6734239159e2

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp39-cp39-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp39-cp39-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 64b7f692070e00cceec173566fc5d6884dd2cd702bff6ab4795b55e2c51f734e
MD5 943cfcfb4e60af6cb8ef921602dfd0a5
BLAKE2b-256 11c24cfce22689f5fdced1ceb9efe16db3ee629baa9444b76077e56acc5df184

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp38-none-win_amd64.whl
  • Upload date:
  • Size: 462.5 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp38-none-win_amd64.whl
Algorithm Hash digest
SHA256 90497b916561d1fc5b5b3b97ddb3a32ab7243941ecbe20a16df1b7d44f41c72a
MD5 d43dd011a4caa06891241336de207b9d
BLAKE2b-256 f7106838ddf3fa5118b1a0500c8c2c279d4920dab32fbe9b38857eb1a5a0570d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp38-none-win32.whl
  • Upload date:
  • Size: 440.4 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp38-none-win32.whl
Algorithm Hash digest
SHA256 815841b5cc8fdbb1dd5aa98ad275c2ef1b118a28659d2e31bbc36b656e5cd95e
MD5 5cfffb81b1b89bf86c90cf29881bfeba
BLAKE2b-256 513138d8765df97ece8a9c80b9da280d0f6c72a06b548de1034f9286579b9e9c

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46881ad1e7f9c4c55e07cafec0208912036ddcae42661af63f5499948c8736d5
MD5 1e9fb399072be858f83407f72c642378
BLAKE2b-256 786a70c6bac9aa441d68c2f56400b53f86845b804858754404c5dc60e877e99f

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 ced69c1229a2d23ce925b631ff3e622b3ae5af026d441fd7e489ac035ab7e43b
MD5 095e0f499281fda29d9c0d073aac8579
BLAKE2b-256 23bace5a0b16394b56536f55e706790c176e0dcbf581d6f8cb2a5f875a2b870d

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 b9cea67b9b19ebff1233d21d39cf65a1c71c1109f6c2e86a7d1bc0d940b2ace8
MD5 50a4c9d9a482ea08761726f5916c0b9b
BLAKE2b-256 d3f547beeb764bd22e54f869d033d4ee8594e4a3c633088d2ce4a1dec54b3b25

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 920d2087c7566619552da5d042e80e0b3b6130f2c316a781f2cee7976bffc8d6
MD5 b795357ea03f37c4281623a6bba0abd7
BLAKE2b-256 7d33ec3143dfd86a7129eed09e8ed230dd9cd6da745a2b8beb87c58c6afd7092

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9bb17cc90b88d7f3388ae2d45771aaa12bcae5dab0777ea1a76459cd36b9eeb6
MD5 3d9ef960616a658f5bb87c7211fe3a44
BLAKE2b-256 92f6bff8b3964ed8d06deee91d13e080ca667ee929237b6438a720bb61233fec

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 2646858b7494d98b081e4aa5d3981cbf0d136bb807a862ab1b6fefccc8612807
MD5 28b5c08d3753d8f056d806367f7513da
BLAKE2b-256 0cb932977065523e35b0bd508ac3c4422d7d235a6e1df9c7f1855f42465eaf1e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-macosx_10_9_x86_64.macosx_11_0_arm64.macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 315e79f9b82d4553f4851780937e2a6df6f5fc2dc121b06b06ff4d8b69ab08c0
MD5 9075964bb8dc7a103104cdbec7c5e4a5
BLAKE2b-256 496de4ce3676faa2b9d3f0991e44a59eb4e337bc029a5d6044a49e96c59800c1

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp38-cp38-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp38-cp38-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 b608ec5cbe2e54c4906cee8dd85210df1a826b032571a75a6c7bc5a89a258067
MD5 6ced677583fe43db8d8fd0c968c6e219
BLAKE2b-256 b1fe9f62056ec8e57a7a82c746f474c6e88d6e22653c9c5999b209157933c363

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 462.7 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 ed630fe29296a27950258d36f6bbe531c2ad6370f5be94fc5763c550e8449915
MD5 4988b9587236c764111601a6a67115f9
BLAKE2b-256 baff443463dde1266497874bfe0177f3a8e6b558a35d18620f5cb71497c8894e

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-none-win32.whl.

File metadata

  • Download URL: pycrdt-0.3.5-cp37-none-win32.whl
  • Upload date:
  • Size: 440.5 kB
  • Tags: CPython 3.7, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.12.0

File hashes

Hashes for pycrdt-0.3.5-cp37-none-win32.whl
Algorithm Hash digest
SHA256 bf77aec1f668843eb252e8d7354ae51cc5e86a80d0847c4d7c99bcddfde732e1
MD5 d5d695a9f2f72c4fffbc76c507ed60a5
BLAKE2b-256 e6cf049834c2d5772de56ecc63cae3b2bfe4403ebbf66afe3beff16d9f1d4c28

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab3869c40d95dd6fc9e06f973949f77df9774d3ea290b2674facaede448ee095
MD5 4d7dcaeef54e0072c1b8877f06e37823
BLAKE2b-256 81007af3d9fe33758ae13856c1bb9e2804fc3275b9953d90b67eddaa39675168

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 9bf5e294fbace0e2d5c40b179a737c8fa473d83611c98a40d1282dde3571e489
MD5 3e61e57c8c399a3ea21ab530733ec04c
BLAKE2b-256 d4bdd981d636b6075efeb5cd24f0bb0c782b6bf31cd6c8e4680954d866f207e4

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 839e2d3c9e53e42fbef8cf6340adc3c35034ecc2770d7e339402222bc01af30e
MD5 7d78648d18e90b20ed5e3a1e9ca9a119
BLAKE2b-256 c718a748c35bbf40c9b5c55202a7aeb346beb09a5f8a3b666bab5aeda813c021

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_armv7l.manylinux2014_armv7l.whl
Algorithm Hash digest
SHA256 336543c3585ae62cec4a730dddc5b39ac7877047b24aeafe5b04f8fe1e557467
MD5 3565c0eac59d5f2e922e8510abe02a2d
BLAKE2b-256 ab4cac2ada545c6dd7836310cf5000eb0100b27df1a9ea948d18d237116b7179

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 05942ce9b6dad2971beddb1485ebd192ba63e3d36e642ccb644cc321c1b0df7b
MD5 8d6817cdecfd87ffb742733665bfcf9f
BLAKE2b-256 71f8262a6bb5c78b2d5879ae1fe8f43440b4d44d175cd3bd3aeb9213d96a8514

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.whl
Algorithm Hash digest
SHA256 6804ccef3fb84d66b89cb59a92344d892116bc61fe8f0231913d5e70cadd5369
MD5 9bc8bd2350677124cab187242fd68ef6
BLAKE2b-256 0e1b0f28e8e39c94a59e3c73db8986889d7c3c3422a7a81350f6356227b4c541

See more details on using hashes here.

File details

Details for the file pycrdt-0.3.5-cp37-cp37m-macosx_10_7_x86_64.whl.

File metadata

File hashes

Hashes for pycrdt-0.3.5-cp37-cp37m-macosx_10_7_x86_64.whl
Algorithm Hash digest
SHA256 a7d439293e3f25bfd5cb6f92e34ad9d45e346bc23b7d6a493b63a60e619adbc8
MD5 59363297731fd7e7e20c4b37a8d3a6a9
BLAKE2b-256 3aeae00d8d204bf1cf7608a8c322034b9718826f6fa056cc44149459872167ac

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page