Skip to main content

Detect microsaccades

Project description

pycrosaccade

Detect microsaccades

Installation

Clone repo into your preprocessing directory

> git clone https://github.com/robbertmijn/pycrosaccade

Usage

Use in combination with https://github.com/smathot/python-eyelinkparser/tree/master/eyelinkparser

Preprocessing

from pycrosaccade import microsaccades
from eyelinkparser import parse, defaulttraceprocessor

# Parse data as usual
dm = parse(
    traceprocessor=defaulttraceprocessor(
      blinkreconstruct=True, 
      downsample=None, 
      mode = "advanced"
    )
)

Out:

....................................................................................................................................

Microsaccades

# for each phase in the experiment, add 4 columns (saccetlist_phase, saccstlist_phase, saccfistlist_phase, saccfreq_phase)

microsaccades(dm)

print(dm.saccstlist_fixation)

Out:

col[[  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2198.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 434.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1280.   nan   nan   nan   nan   nan]
 [ 363.  618.  843.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1004.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  88.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 263.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 678. 1382.   nan   nan   nan   nan]
 [  87.   nan   nan   nan   nan   nan]
 [ 667.   nan   nan   nan   nan   nan]
 [1024.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 608.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1228. 1995.   nan   nan   nan   nan]
 [ 301.   nan   nan   nan   nan   nan]
 [1030. 1193.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 728.   nan   nan   nan   nan   nan]
 [  93.  256.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  37.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2132.   nan   nan   nan   nan   nan]
 [1719.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 190.  813. 2124.   nan   nan   nan]
 [  33.   nan   nan   nan   nan   nan]
 [ 415.  780.  898. 1933. 2357.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 252.  434.  875. 1052.   nan   nan]
 [ 660. 1207. 2476.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  21. 1487.   nan   nan   nan   nan]
 [ 207.  394.  625.   nan   nan   nan]
 [ 116.  549. 1231. 1378.   nan   nan]
 [1265. 1443.   nan   nan   nan   nan]
 [1395.   nan   nan   nan   nan   nan]
 [  97.  270.  686. 1182.   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 138.  337.  775. 2131.   nan   nan]
 [ 299.  722.  914. 2216.   nan   nan]
 [ 486. 1366.   nan   nan   nan   nan]
 [ 404.  549.   nan   nan   nan   nan]
 [ 615.   nan   nan   nan   nan   nan]
 [ 312.  617. 1387. 1861.   nan   nan]
 [ 163.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 863. 1019.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 104.   nan   nan   nan   nan   nan]
 [ 459.   nan   nan   nan   nan   nan]
 [ 268.  957. 1114.   nan   nan   nan]
 [ 348.  472.   nan   nan   nan   nan]
 [ 201.  351. 1048. 1842. 2485.   nan]
 [1038. 1907. 2132.   nan   nan   nan]
 [ 157.   nan   nan   nan   nan   nan]
 [ 625.  915. 1050.   nan   nan   nan]
 [ 262.  722. 1285. 1585.   nan   nan]
 [  50.  603. 1515. 1936. 2113.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  68.  263. 1016. 1171. 1685. 2413.]
 [  nan   nan   nan   nan   nan   nan]
 [ 619.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]]

Visualisation

from datamatrix import plot
plot.trace(dm.saccfreq_fixation)

Out:

alt text

Parameters

TODO (but see functions)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrosaccade-0.2.0.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

pycrosaccade-0.2.0-py3-none-any.whl (4.8 kB view details)

Uploaded Python 3

File details

Details for the file pycrosaccade-0.2.0.tar.gz.

File metadata

  • Download URL: pycrosaccade-0.2.0.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.26.0

File hashes

Hashes for pycrosaccade-0.2.0.tar.gz
Algorithm Hash digest
SHA256 d3af746599bf286f2b76e06a5287c8c5a0eb860fa61f7e983d3f2f6bd940a46e
MD5 85ad4a9a4434528038728db53a5f18db
BLAKE2b-256 99d5050f6705b9f93f7d1d087ebfb19879e9267c2367d7b5a7f9c49d01ba8959

See more details on using hashes here.

File details

Details for the file pycrosaccade-0.2.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pycrosaccade-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 664340c80f0437e005854dfdd448348c9a84b18df58eff9864a0d524d342ebb0
MD5 da9e07b67a063385f5d11095200caacc
BLAKE2b-256 e4250a878a0cf3ad3c9a1c93bf99860b3e70bdea8501cbdd95a6e38c6885c32c

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page