Skip to main content

Detect microsaccades

Project description

pycrosaccade

Detect microsaccades

Installation

Use pip install

> pip install pycrosaccade

Usage

Use in combination with https://github.com/smathot/python-eyelinkparser/tree/master/eyelinkparser

Preprocessing

from pycrosaccade import microsaccades
from eyelinkparser import parse, defaulttraceprocessor

# Parse data as usual
dm = parse(
    traceprocessor=defaulttraceprocessor(
      blinkreconstruct=True, 
      downsample=None, 
      mode = "advanced"
    )
)

Out:

....................................................................................................................................

Microsaccades

# for each phase in the experiment, add 4 columns (saccetlist_phase, saccstlist_phase, saccfistlist_phase, saccfreq_phase)

microsaccades(dm)

print(dm.saccstlist_fixation)

Out:

col[[  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2198.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 434.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1280.   nan   nan   nan   nan   nan]
 [ 363.  618.  843.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1004.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  88.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 263.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 678. 1382.   nan   nan   nan   nan]
 [  87.   nan   nan   nan   nan   nan]
 [ 667.   nan   nan   nan   nan   nan]
 [1024.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 608.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1228. 1995.   nan   nan   nan   nan]
 [ 301.   nan   nan   nan   nan   nan]
 [1030. 1193.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 728.   nan   nan   nan   nan   nan]
 [  93.  256.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  37.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2132.   nan   nan   nan   nan   nan]
 [1719.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 190.  813. 2124.   nan   nan   nan]
 [  33.   nan   nan   nan   nan   nan]
 [ 415.  780.  898. 1933. 2357.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 252.  434.  875. 1052.   nan   nan]
 [ 660. 1207. 2476.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  21. 1487.   nan   nan   nan   nan]
 [ 207.  394.  625.   nan   nan   nan]
 [ 116.  549. 1231. 1378.   nan   nan]
 [1265. 1443.   nan   nan   nan   nan]
 [1395.   nan   nan   nan   nan   nan]
 [  97.  270.  686. 1182.   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 138.  337.  775. 2131.   nan   nan]
 [ 299.  722.  914. 2216.   nan   nan]
 [ 486. 1366.   nan   nan   nan   nan]
 [ 404.  549.   nan   nan   nan   nan]
 [ 615.   nan   nan   nan   nan   nan]
 [ 312.  617. 1387. 1861.   nan   nan]
 [ 163.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 863. 1019.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 104.   nan   nan   nan   nan   nan]
 [ 459.   nan   nan   nan   nan   nan]
 [ 268.  957. 1114.   nan   nan   nan]
 [ 348.  472.   nan   nan   nan   nan]
 [ 201.  351. 1048. 1842. 2485.   nan]
 [1038. 1907. 2132.   nan   nan   nan]
 [ 157.   nan   nan   nan   nan   nan]
 [ 625.  915. 1050.   nan   nan   nan]
 [ 262.  722. 1285. 1585.   nan   nan]
 [  50.  603. 1515. 1936. 2113.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  68.  263. 1016. 1171. 1685. 2413.]
 [  nan   nan   nan   nan   nan   nan]
 [ 619.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]]

Visualisation

from datamatrix import plot
plot.trace(dm.saccfreq_fixation)

Out:

alt text

Parameters

TODO (but see functions)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrosaccade-0.3.0.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

pycrosaccade-0.3.0-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pycrosaccade-0.3.0.tar.gz.

File metadata

  • Download URL: pycrosaccade-0.3.0.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.26.0

File hashes

Hashes for pycrosaccade-0.3.0.tar.gz
Algorithm Hash digest
SHA256 5c8219d7ddd82019fee0a8ae9e684d5321c0fc57d0e5f2fddb7616006c7268a8
MD5 9c765957f229c7d83c1da17de00c8aa8
BLAKE2b-256 6c9a2ae9b2becfc348650ebbebf79a89cefde320d23cdae8de477c5e60f84cc1

See more details on using hashes here.

File details

Details for the file pycrosaccade-0.3.0-py3-none-any.whl.

File metadata

File hashes

Hashes for pycrosaccade-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 7d3f3a395c9a25eea7ffa1ac700506054b84930b0a7ca79c036ce98ab9f35558
MD5 96e6ffcc9423d1aaef7124dbb4747a0a
BLAKE2b-256 e5fe826c7d5afde21a72b161b7dca3270ef0e8225f14ee2b21a27a5b4e8c5e53

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page