Skip to main content

Detect microsaccades

Project description

pycrosaccade

Detect microsaccades

Installation

Use pip install

> pip install pycrosaccade

Usage

Use in combination with https://github.com/smathot/python-eyelinkparser/tree/master/eyelinkparser

Preprocessing

from pycrosaccade import microsaccades
from eyelinkparser import parse, defaulttraceprocessor

# Parse data as usual
dm = parse(
    traceprocessor=defaulttraceprocessor(
      blinkreconstruct=True, 
      downsample=None, 
      mode = "advanced"
    )
)

Out:

....................................................................................................................................

Microsaccades

# for each phase in the experiment, add 4 columns (saccetlist_phase, saccstlist_phase, saccfistlist_phase, saccfreq_phase)

microsaccades(dm)

print(dm.saccstlist_fixation)

Out:

col[[  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2198.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 434.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1280.   nan   nan   nan   nan   nan]
 [ 363.  618.  843.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1004.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  88.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 263.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 678. 1382.   nan   nan   nan   nan]
 [  87.   nan   nan   nan   nan   nan]
 [ 667.   nan   nan   nan   nan   nan]
 [1024.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 608.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [1228. 1995.   nan   nan   nan   nan]
 [ 301.   nan   nan   nan   nan   nan]
 [1030. 1193.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 728.   nan   nan   nan   nan   nan]
 [  93.  256.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  37.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [2132.   nan   nan   nan   nan   nan]
 [1719.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 190.  813. 2124.   nan   nan   nan]
 [  33.   nan   nan   nan   nan   nan]
 [ 415.  780.  898. 1933. 2357.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 252.  434.  875. 1052.   nan   nan]
 [ 660. 1207. 2476.   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  21. 1487.   nan   nan   nan   nan]
 [ 207.  394.  625.   nan   nan   nan]
 [ 116.  549. 1231. 1378.   nan   nan]
 [1265. 1443.   nan   nan   nan   nan]
 [1395.   nan   nan   nan   nan   nan]
 [  97.  270.  686. 1182.   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 138.  337.  775. 2131.   nan   nan]
 [ 299.  722.  914. 2216.   nan   nan]
 [ 486. 1366.   nan   nan   nan   nan]
 [ 404.  549.   nan   nan   nan   nan]
 [ 615.   nan   nan   nan   nan   nan]
 [ 312.  617. 1387. 1861.   nan   nan]
 [ 163.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 863. 1019.   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [ 104.   nan   nan   nan   nan   nan]
 [ 459.   nan   nan   nan   nan   nan]
 [ 268.  957. 1114.   nan   nan   nan]
 [ 348.  472.   nan   nan   nan   nan]
 [ 201.  351. 1048. 1842. 2485.   nan]
 [1038. 1907. 2132.   nan   nan   nan]
 [ 157.   nan   nan   nan   nan   nan]
 [ 625.  915. 1050.   nan   nan   nan]
 [ 262.  722. 1285. 1585.   nan   nan]
 [  50.  603. 1515. 1936. 2113.   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]
 [  68.  263. 1016. 1171. 1685. 2413.]
 [  nan   nan   nan   nan   nan   nan]
 [ 619.   nan   nan   nan   nan   nan]
 [  nan   nan   nan   nan   nan   nan]]

Visualisation

from datamatrix import plot
plot.trace(dm.saccfreq_fixation)

Out:

alt text

Parameters

TODO (but see functions)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pycrosaccade-0.3.1.tar.gz (7.2 MB view details)

Uploaded Source

Built Distribution

pycrosaccade-0.3.1-py3-none-any.whl (4.5 kB view details)

Uploaded Python 3

File details

Details for the file pycrosaccade-0.3.1.tar.gz.

File metadata

  • Download URL: pycrosaccade-0.3.1.tar.gz
  • Upload date:
  • Size: 7.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: python-requests/2.26.0

File hashes

Hashes for pycrosaccade-0.3.1.tar.gz
Algorithm Hash digest
SHA256 d43cc7dc290c9de0a9ca312b6dd3c504df7f83321ee54df06515b2cc623d11bc
MD5 ce35fea3ff2e1ffa7c129fc3885b11fd
BLAKE2b-256 0406b8218e4431cd51583214cda8cd7a3533193575c5400bf09583952988a4c5

See more details on using hashes here.

File details

Details for the file pycrosaccade-0.3.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pycrosaccade-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6936da910128ce2099f690bf3dcacf4f546ba76c027224b90540e9f05f605ac6
MD5 728f0780ac2604b0dc45b52a028ae3ac
BLAKE2b-256 02a7f0ac707dbf67bbdc3977cb356be3e583c5940b80234e1a371bddaa33b38b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page