Boring, opinionated helpers for PydanticAI that are so simple you didn't want to even vibe code them. (Unofficial)
Project description
pydantic-ai-helpers
Boring, opinionated helpers for PydanticAI that are so dumb you didn't want to implement them. So I did.
⚠️ This is NOT an official PydanticAI package - just a simple personal helper library.
The Problem
PydanticAI is amazing! But at some point you'll need to quickly and easily extract aspects of your conversations. It's not hard but it's a pain to do, because neither you nor the LLMS know how to do it, so you'll waste 10+ minutes to do:
# Want the last tool call for your UI updates?
last_tool_call = None
for message in result.all_messages():
for part in message.parts:
if isinstance(part, ToolCallPart):
last_tool_call = part
# Need that metadata you passed for evaluations?
metadata_parts = []
for message in result.all_messages():
for part in message.parts:
if isinstance(part, ToolReturnPart) and part.metadata:
metadata_parts.append(part.metadata)
# How about just the user's question again?
user_question = None
for message in result.all_messages():
for part in message.parts:
if isinstance(part, UserPromptPart):
user_question = part.content
break
We've all been there. We've got you!
from pydantic_ai_helpers import History
# or for convenience:
import pydantic_ai_helpers as ph
hist = History(result) # or ph.History(result)
last_tool_call = hist.tools.calls().last() # Done
metadata = hist.tools.returns().last().metadata # Easy
user_question = hist.user.last().content # Simple
system_prompt = hist.system_prompt() # Get system message
media_items = hist.media.images() # Extract media content
The best part? Your IDE will help you with the suggestions for the available methods so you don't have to remember anything!
Installation
uv add pydantic-ai-helpers
# pip install pydantic-ai-helpers
# poetry add pydantic-ai-helpers
Quick Start
from pydantic_ai import Agent
from pydantic_ai_helpers import History
# or: import pydantic_ai_helpers as ph
agent = Agent("openai:gpt-4.1-mini")
result = agent.run_sync("Tell me a joke")
# Wrap once, access everything
hist = History(result) # or ph.History(result)
# Get the first and last user messages
print(hist.user.first().content) # First user message
print(hist.user.last().content) # Last user message
# Output: "Tell me a joke"
# Get all AI responses
for response in hist.ai.all():
print(response.content)
# Check token usage
print(f"Tokens used: {hist.usage().total_tokens}")
# Access system prompt (if any)
if system_prompt := hist.system_prompt():
print(f"System prompt: {system_prompt.content}")
# Access media content
images = hist.media.images()
if images:
print(f"Found {len(images)} images in conversation")
Common Use Cases
Extract What You Need for Your App
hist = History(result)
# Update your UI with the latest tool status
if latest_call := hist.tools.calls().last():
update_ui_status(f"Called {latest_call.tool_name}...")
# Get conversation context for logging
user_query = hist.user.last().content
ai_response = hist.ai.last().content
log_conversation(user_query, ai_response)
# Check token costs for billing
total_cost = hist.usage().total_tokens * your_token_rate
Debug Tool Workflows
# See what tools were actually called
for call in hist.tools.calls().all():
print(f"Called {call.tool_name} with {call.args}")
# Check what came back
for ret in hist.tools.returns().all():
print(f"{ret.tool_name} returned: {ret.content}")
if ret.metadata: # Your evaluation metadata
print(f"Metadata: {ret.metadata}")
Analyze Conversations
# Count interactions
print(f"User asked {len(hist.user.all())} questions")
print(f"AI made {len(hist.tools.calls().all())} tool calls")
print(f"Total tokens: {hist.usage().total_tokens}")
# Get specific tool results for processing
weather_results = hist.tools.returns(name="get_weather").all()
for result in weather_results:
process_weather_data(result.content)
Work with Media Content
# Access all media content
all_media = hist.media.all()
print(f"Found {len(all_media)} media items")
# Get specific media types
images = hist.media.images() # All images (URLs + binary)
audio = hist.media.audio() # All audio files
documents = hist.media.documents() # All documents
videos = hist.media.videos() # All videos
# Filter by storage type
url_images = hist.media.images(url_only=True) # Only ImageUrl objects
binary_images = hist.media.images(binary_only=True) # Only binary images
# Get the most recent media
latest_media = hist.media.last()
if latest_media:
print(f"Latest media: {type(latest_media).__name__}")
# Filter by exact type
from pydantic_ai.messages import ImageUrl, BinaryContent
image_urls = hist.media.by_type(ImageUrl)
binary_content = hist.media.by_type(BinaryContent)
Access System Prompts
# Get the system prompt (if any)
system_prompt = hist.system_prompt()
if system_prompt:
print(f"System prompt: {system_prompt.content}")
else:
print("No system prompt found")
# Use in analysis
if system_prompt and "helpful" in system_prompt.content:
print("This agent was configured to be helpful")
Examples
Multi-turn Conversation Analysis
messages = []
topics = [
"What's the weather in London?",
"How about Paris?",
"Which city is warmer?"
]
for topic in topics:
result = agent.run_sync(topic, message_history=messages)
messages = result.all_messages()
hist = History(result)
# Analyze the conversation flow
print(f"User asked {len(hist.user.all())} questions")
print(f"AI responded {len(hist.ai.all())} times")
print(f"Made {len(hist.tools.calls())} tool calls")
# Get specific information
london_weather = hist.tools.returns(name="get_weather").all()[0]
paris_weather = hist.tools.returns(name="get_weather").all()[1]
Dice Game with Tools
# From the PydanticAI tutorial
result = agent.run_sync("Roll a dice")
hist = History(result)
# Find what the dice rolled
dice_result = hist.tools.returns(name="roll_dice").last()
print(f"Dice rolled: {dice_result.content}")
# See how the AI responded
ai_message = hist.ai.last()
print(f"AI said: {ai_message.content}")
Streaming Support
async with agent.run_stream("Tell me a story") as result:
async for chunk in result.stream():
print(chunk, end="")
# After streaming completes
hist = History(result)
print(f"\nTotal tokens: {hist.tokens().total_tokens}")
Loading from Serialized Conversations
import json
from pydantic_core import to_jsonable_python
from pydantic_ai import Agent
from pydantic_ai.messages import ModelMessagesTypeAdapter
# Save a conversation
agent = Agent('openai:gpt-4.1-mini')
result = agent.run_sync('Tell me a joke.')
messages = result.all_messages()
# Serialize to file
with open('conversation.json', 'w') as f:
json.dump(to_jsonable_python(messages), f)
# Later, load it back
hist = History('conversation.json')
print(hist) # History(1 turn, 50 tokens)
print(hist.user.last().content) # "Tell me a joke."
print(hist.ai.last().content) # The joke response
# Or use Path objects
from pathlib import Path
hist = History(Path('conversation.json'))
# Continue the conversation with loaded history
same_messages = ModelMessagesTypeAdapter.validate_python(
to_jsonable_python(hist.all_messages())
)
result2 = agent.run_sync(
'Tell me a different joke.',
message_history=same_messages
)
Evals Helpers
You can compare values and collections with simple, reusable comparators, or use small evaluator classes to compare fields by dotted paths. Now with fuzzy string matching support!
Quick Comparators
from pydantic_ai_helpers.evals import ScalarCompare, ListCompare, InclusionCompare
# Scalars with coercion and tolerance
comp = ScalarCompare(coerce_to="float", abs_tol=0.01)
score, why = comp("3.14", 3.13) # -> (1.0, 'numbers match')
# Lists with recall/precision or equality
recall = ListCompare(mode="recall")
score, why = recall(["a", "b"], ["a", "b", "c"]) # -> ~0.667
equality = ListCompare(mode="equality", order_sensitive=False)
score, _ = equality(["a", "b"], ["b", "a"]) # -> 1.0
# Value in acceptable list with fuzzy matching (NEW!)
inc = InclusionCompare() # Uses defaults: normalization + fuzzy matching
score, _ = inc("aple", ["apple", "banana", "cherry"]) # -> ~0.9 (fuzzy match)
Fuzzy String Matching (NEW!)
The library now includes powerful fuzzy string matching using rapidfuzz:
from pydantic_ai_helpers.evals import ScalarCompare, CompareOptions, FuzzyOptions
# Default behavior: fuzzy matching enabled with 0.85 threshold
comp = ScalarCompare()
score, why = comp("colour", "color") # -> (0.91, 'fuzzy match (score=0.91)')
# Exact matching (disable fuzzy)
comp = ScalarCompare(fuzzy_enabled=False)
score, why = comp("colour", "color") # -> (0.0, 'values differ...')
# Custom fuzzy settings
comp = ScalarCompare(
fuzzy_threshold=0.9, # Stricter threshold
fuzzy_algorithm="ratio", # Different algorithm
normalize_lowercase=True # Case insensitive
)
# For lists with fuzzy matching
from pydantic_ai_helpers.evals import ListRecall
evaluator = ListRecall() # Fuzzy enabled by default
score, why = evaluator(
["Python", "AI", "Machine Learning"], # Output
["python", "ai", "data science", "ml"] # Expected
)
# Uses fuzzy scores: "Machine Learning" partially matches "ml"
Field-to-Field Evaluators
Use evaluators when you want to compare fields inside nested objects using dotted paths:
from pydantic_ai_helpers.evals import ScalarEquals, ListRecall, ListEquality, ValueInExpectedList
from pydantic_evals.evaluators import EvaluatorContext
# Basic usage (fuzzy enabled by default)
evaluator = ScalarEquals(
output_path="user.name",
expected_path="user.name",
evaluation_name="name_match",
)
# Custom fuzzy settings for stricter matching
evaluator = ScalarEquals(
output_path="predicted.category",
expected_path="actual.category",
fuzzy_threshold=0.95, # Very strict
normalize_alphanum=True, # Remove punctuation
evaluation_name="category_match",
)
# List evaluation with fuzzy matching
list_evaluator = ListRecall(
output_path="predicted_tags",
expected_path="required_tags",
fuzzy_enabled=True, # Default: True
fuzzy_threshold=0.8, # Lower threshold for more matches
normalize_lowercase=True, # Default: True
)
# Disable fuzzy for exact matching only
exact_evaluator = ScalarEquals(
output_path="user.id",
expected_path="user.id",
fuzzy_enabled=False, # Exact matching only
coerce_to="str",
)
# Given output/expected objects, use EvaluatorContext to evaluate
ctx = EvaluatorContext(
inputs=None,
output={"user": {"name": "Jon Smith"}},
expected_output={"user": {"name": "John Smith"}}
)
res = evaluator.evaluate(ctx)
print(res.value, res.reason) # 0.89, "[name_match] fuzzy match (score=0.89)"
Advanced Fuzzy Options
from pydantic_ai_helpers.evals import CompareOptions, FuzzyOptions, NormalizeOptions
# Structured options for complex cases
opts = CompareOptions(
normalize=NormalizeOptions(
lowercase=True, # Case insensitive
strip=True, # Remove whitespace
alphanum=True, # Keep only letters/numbers
),
fuzzy=FuzzyOptions(
enabled=True,
threshold=0.85, # 85% similarity required
algorithm="token_set_ratio" # Best for unordered word matching
)
)
evaluator = ScalarEquals(
output_path="description",
expected_path="description",
compare_options=opts
)
# Available fuzzy algorithms:
# - "ratio": Character-based similarity
# - "partial_ratio": Best substring match
# - "token_sort_ratio": Word-based with sorting
# - "token_set_ratio": Word-based with set logic (default)
Practical Examples
# Product name matching with typos
evaluator = ScalarEquals(
output_path="product_name",
expected_path="product_name",
fuzzy_threshold=0.8, # Allow some typos
normalize_lowercase=True
)
# Tag similarity for content classification
tag_recall = ListRecall(
output_path="predicted_tags",
expected_path="actual_tags",
fuzzy_enabled=True, # Handle variations like "AI" vs "artificial intelligence"
normalize_strip=True
)
# Category validation with fuzzy fallback
category_check = ValueInExpectedList(
output_path="predicted_category",
expected_path="valid_categories",
fuzzy_threshold=0.9, # High threshold for category validation
normalize_alphanum=True # Ignore punctuation differences
)
Notes:
- Fuzzy matching is enabled by default with 0.85 threshold and
token_set_ratio
algorithm - Allowed
coerce_to
values: "str", "int", "float", "bool", "enum" (or pass an Enum class) ListCompare.mode
values: "equality", "recall", "precision"- Normalization defaults:
lowercase=True, strip=True, collapse_spaces=True, alphanum=False
- Fuzzy algorithms: "ratio", "partial_ratio", "token_sort_ratio", "token_set_ratio"
- Normalization always happens before fuzzy matching for better results
API Reference
History
Class
The main wrapper class that provides access to all functionality.
Constructor:
History(result_or_messages)
- Accepts aRunResult
,StreamedRunResult
, orlist[ModelMessage]
Attributes:
user: RoleView
- Access user messagesai: RoleView
- Access AI messagessystem: RoleView
- Access system messagestools: ToolsView
- Access tool calls and returnsmedia: MediaView
- Access media content in user messages
Methods:
all_messages() -> list[ModelMessage]
- Get raw message listusage() -> Usage
- Aggregate token usagetokens() -> Usage
- Alias forusage()
system_prompt() -> SystemPromptPart | None
- Get the first system prompt
RoleView
Class
Provides filtered access to messages by role.
Methods:
all() -> list[Part]
- Get all parts for this rolelast() -> Part | None
- Get the most recent partfirst() -> Part | None
- Get the first part
ToolsView
Class
Access tool-related messages.
Methods:
calls(*, name: str | None = None) -> ToolPartView
- Access tool callsreturns(*, name: str | None = None) -> ToolPartView
- Access tool returns
ToolPartView
Class
Filtered view of tool calls or returns.
Methods:
all() -> list[ToolCallPart | ToolReturnPart]
- Get all matching partslast() -> ToolCallPart | ToolReturnPart | None
- Get the most recent partfirst() -> ToolCallPart | ToolReturnPart | None
- Get the first part
Args Conversion:
When tool calls are accessed via all()
, last()
, or first()
, the library automatically converts unparsed string args to dictionary args when possible. If a ToolCallPart
has string-based args that contain valid JSON (non-empty after stripping), they will be converted to dictionary args using the .args_as_dict()
method. This ensures consistent dictionary-based args for tool calls that contain valid JSON payloads, which is a minor deviation from the standard PydanticAI behavior that would leave them as strings.
MediaView
Class
Access media content from user messages (images, audio, documents, videos).
Methods:
all() -> list[MediaContent]
- Get all media contentlast() -> MediaContent | None
- Get the most recent media itemfirst() -> MediaContent | None
- Get the first media itemimages(*, url_only=False, binary_only=False)
- Get image contentaudio(*, url_only=False, binary_only=False)
- Get audio contentdocuments(*, url_only=False, binary_only=False)
- Get document contentvideos(*, url_only=False, binary_only=False)
- Get video contentby_type(media_type)
- Get content by specific type (e.g.,ImageUrl
,BinaryContent
)
Common Patterns
Check if a Tool Was Used
if hist.tools.calls(name="calculator").last():
result = hist.tools.returns(name="calculator").last()
print(f"Calculation result: {result.content}")
Count Message Types
print(f"User messages: {len(hist.user.all())}")
print(f"AI responses: {len(hist.ai.all())}")
print(f"Tool calls: {len(hist.tools.calls().all())}")
print(f"Tool returns: {len(hist.tools.returns().all())}")
Extract Conversation Text
# Get all user inputs
user_inputs = [msg.content for msg in hist.user.all()]
# Get all AI responses
ai_responses = [msg.content for msg in hist.ai.all()]
# Create a simple transcript
for user, ai in zip(user_inputs, ai_responses):
print(f"User: {user}")
print(f"AI: {ai}")
print()
Work with Media Content
# Check if conversation has images
if hist.media.images():
print("This conversation contains images")
for img in hist.media.images():
if hasattr(img, 'url'):
print(f"Image URL: {img.url}")
else:
print(f"Binary image: {img.media_type}, {len(img.data)} bytes")
# Process different media types
for media_item in hist.media.all():
if isinstance(media_item, ImageUrl):
download_image(media_item.url)
elif isinstance(media_item, BinaryContent):
save_binary_content(media_item.data, media_item.media_type)
Extract System Configuration
# Check system prompt for agent behavior
system_prompt = hist.system_prompt()
if system_prompt:
if "helpful" in system_prompt.content.lower():
agent_type = "helpful_assistant"
elif "creative" in system_prompt.content.lower():
agent_type = "creative_writer"
else:
agent_type = "general_purpose"
print(f"Agent type: {agent_type}")
Design Philosophy
- Boring is Good - No clever magic, just simple method calls
- Autocomplete-Friendly - Your IDE knows exactly what's available
- Zero Config - Works out of the box with any PydanticAI result
- Type Safe - Full type hints for everything
- Immutable - History objects don't modify your data
Contributing
Found a bug? Want a feature? PRs welcome!
- Fork the repo
- Create your feature branch (
git checkout -b feature/amazing-feature
) - Write tests (we maintain 100% coverage)
- Make your changes
- Run
make lint test
- Commit your changes (
git commit -m 'Add amazing feature'
) - Push to the branch (
git push origin feature/amazing-feature
) - Open a Pull Request
Development
# Clone the repo
git clone https://github.com/yourusername/pydantic-ai-helpers.git
cd pydantic-ai-helpers
# Install in development mode
make install
# Run tests
make test
# Run linting
make lint
# Format code
make format
License
MIT - see LICENSE file.
Built with boredom-driven development. Because sometimes the most useful code is the code that does the obvious thing, obviously.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pydantic_ai_helpers-0.0.2.tar.gz
.
File metadata
- Download URL: pydantic_ai_helpers-0.0.2.tar.gz
- Upload date:
- Size: 31.3 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
eb977c29eb23decec78fb31f07c7bc06fdb0bd53f551d7fb8b77e65bc69e1f82
|
|
MD5 |
757263dc7c39c3c899cd24adaf1ea977
|
|
BLAKE2b-256 |
49ae4aa17b40eca4888979891cf23b765abd17630757280ccc7c859b96ecf775
|
File details
Details for the file pydantic_ai_helpers-0.0.2-py3-none-any.whl
.
File metadata
- Download URL: pydantic_ai_helpers-0.0.2-py3-none-any.whl
- Upload date:
- Size: 35.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: uv/0.7.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 |
53b1807dfda90c195526f403236aca84ddc783fdd6b57ceb7516b49e77c935ee
|
|
MD5 |
b0d3ad1cedbc914b610cb6693811ad08
|
|
BLAKE2b-256 |
b8ced462d5606111438b8661e40c1b017f94be08bab6828978afba9a384e3b52
|