Skip to main content

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Project description

Pydantic-handler-converter

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Installation

    pip install pydantic_handler_converter

Usage:

>>> from enum import Enum
>>> from typing import Union
>>> from pydantic import BaseModel
>>> from pydantic_handler_converter import BasePydanticFormHandlers

# -----------------------------------------------------------------------------------------------

>>> # Simple datatypes schema 
>>> class PersonPydanticFormSchema(BaseModel):
...     name: str
...     age: int
...     height: float 
... 

>>> class PersonFormHanlders(BasePydanticFormHandlers[PersonPydanticFormSchema]):
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'age_view', 'height_view']))) == 0

# -----------------------------------------------------------------------------------------------

>>>  # Enum datatype schema
>>> class Mood(Enum):
...     HAPPY = "😄 Happy"
...     SAD = "😢 Sad"
...     EXCITED = "🤩 Excited"
...     RELAXED = "😌 Relaxed"
...
>>>
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Mood
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0

# -----------------------------------------------------------------------------------------------

>>>  # Complex schema
>>> class Address(BaseModel):
...     street: str
...     city: str
...     postal_code: str
...
>>> class Person(BaseModel):
...      name: str
...      age: int
...      address: Address
...
...
>>> class PersonFormHanlders(BasePydanticFormHandlers[Person]): 
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, 
...     ['name_view', 'address_street_view', 'address_city_view', 'address_postal_code_view']
... ))) == 0
...

# -----------------------------------------------------------------------------------------------

>>> class HappyMood(Enum):
...     HAPPY = "😄 Happy"
...
>>> class SadMood(Enum):
...     SAD = "😢 Sad"
...
>>> class ExcitedMood(Enum):
...     EXCITED = "🤩 Excited"
...
>>> class RelaxedMood(Enum):
...     RELAXED = "😌 Relaxed"
...
>>>
>>>  # Combined Enum datatype schema
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Union[HappyMood, SadMood, ExcitedMood, RelaxedMood]
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_handler_converter-0.1.10.tar.gz (5.8 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pydantic_handler_converter-0.1.10.tar.gz.

File metadata

  • Download URL: pydantic_handler_converter-0.1.10.tar.gz
  • Upload date:
  • Size: 5.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.6.1 CPython/3.10.6 Linux/5.15.0-1047-azure

File hashes

Hashes for pydantic_handler_converter-0.1.10.tar.gz
Algorithm Hash digest
SHA256 9f3957e3a7858152d4948e0a732aaab61a2df1e4ccabde36c6858e4518b8a873
MD5 13df0e2eb3befffae428e14a100d8a0d
BLAKE2b-256 df2d9a2c87aff66653bdfbd973d27988e78ae9c4c14925996940799ac04a7896

See more details on using hashes here.

File details

Details for the file pydantic_handler_converter-0.1.10-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.10-py3-none-any.whl
Algorithm Hash digest
SHA256 66ca47baf9ed48b2f60126ce0ee4b398cb4d2c5d67287dc7e85e218e5d65cc4e
MD5 0dc383f9c565db92a869237b4f906cc6
BLAKE2b-256 49f8a29347f4ae56851a27ad58cf3db1d71fce7e261ddafceda3ec430699cad9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page