Skip to main content

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Project description

Pydantic-handler-converter

This code simplifies the conversion of Pydantic schemas into Aiogram handler groups, making it easy to create form-filling handlers.

Installation

    pip install pydantic_handler_converter

Usage:

>>> from enum import Enum
>>> from typing import Union
>>> from pydantic import BaseModel
>>> from pydantic_handler_converter import BasePydanticFormHandlers

# ----------------------------------------Simple datatypes schema--------------------------------------

>>> class PersonPydanticFormSchema(BaseModel):
...     name: str
...     age: int
...     height: float 
... 

>>> class PersonFormHanlders(BasePydanticFormHandlers[PersonPydanticFormSchema]):
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'age_view', 'height_view']))) == 0
>>> assert PersonFormHanlders(finish_call=None)

# ----------------------------------------Enum datatype schema-----------------------------------------

>>> class Mood(Enum):
...     HAPPY = "😄 Happy"
...     SAD = "😢 Sad"
...     EXCITED = "🤩 Excited"
...     RELAXED = "😌 Relaxed"
...
>>>
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Mood
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

# ----------------------------------------Complex schema-----------------------------------------------

>>> class Address(BaseModel):
...     street: str
...     city: str
...     postal_code: str
...
>>> class Person(BaseModel):
...      name: str
...      age: int
...      address: Address
...
...
>>> class PersonFormHanlders(BasePydanticFormHandlers[Person]): 
...     pass
...
...
>>> dirs = dir(PersonFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, 
...     ['name_view', 'address_street_view', 'address_city_view', 'address_postal_code_view']
... ))) == 0
...
>>> assert PersonFormHanlders(finish_call=None)

# ------------------------------------Combined Enum datatype schema------------------------------------

>>> class HappyMood(Enum):
...     HAPPY = "😄 Happy"
...
>>> class SadMood(Enum):
...     SAD = "😢 Sad"
...
>>> class ExcitedMood(Enum):
...     EXCITED = "🤩 Excited"
...
>>> class RelaxedMood(Enum):
...     RELAXED = "😌 Relaxed"
...
>>>
>>> class PersonMoodPydanticFormSchema(BaseModel):
...     name: str
...     current_mood: Union[HappyMood, SadMood, ExcitedMood, RelaxedMood]
...     future_mood: HappyMood | SadMood | ExcitedMood | RelaxedMood
...
...
>>> class PersonMoodFormHanlders(BasePydanticFormHandlers[PersonMoodPydanticFormSchema]): 
...     pass
...
...
>>> dirs = dir(PersonMoodFormHanlders)
>>> assert len(tuple(filter(lambda x: not x in dirs, ['name_view', 'current_mood_view']))) == 0
>>> assert PersonMoodFormHanlders(finish_call=None)

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydantic_handler_converter-0.1.111.tar.gz (14.4 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pydantic_handler_converter-0.1.111.tar.gz.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.111.tar.gz
Algorithm Hash digest
SHA256 939c6b5afa706e72a1cf7ca7fa42a65b39c2fedaa95934152ff2247f32cf2f19
MD5 01992913325f93ddedd18c6037a4beff
BLAKE2b-256 84b74ed387c6d3b28e6742bcec3c32143d5e0fc6dbdec35be8f9fade7b839799

See more details on using hashes here.

File details

Details for the file pydantic_handler_converter-0.1.111-py3-none-any.whl.

File metadata

File hashes

Hashes for pydantic_handler_converter-0.1.111-py3-none-any.whl
Algorithm Hash digest
SHA256 2600ef52da98d458613c3a4f5af4da0f31b2a548c60223c0363c79852916246a
MD5 7355f4a29b213e05b19a2c44c6b81f60
BLAKE2b-256 285fa61f185fce92d43f81c733ad1d67054aed896b9d60867a0cd035f47a11ed

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page