Skip to main content

Python Port of NYU's Designer pipeline for dMRI processing

Project description

PyDesigner

Docker Pulls GitHub release (latest SemVer including pre-releases) Documentation Status

Welcome to the official PyDesigner project!

PyDesigner was inspired by NYU’s DESIGNER dMRI preprocessing pipeline to bring pre- and post- processing to every MRI imaging scientist. With PyDesigner, users are no longer confined to specific file types, operating systems, or complicated scripts just to extract DTI or DKI parameters – PyDesigner makes this easy, and you will love it!

Click here to view documentation PyDesigner Walkthrough Video: Software Setup & Usage

Notable Features

  • 100% Python-based scripts

  • Minimized package dependencies for small package footprint

  • Preprocessing designed to boost SNR

  • Accurate and fast DTI and DKI metrics via cutting-edge algorithms

  • One-shot preprocessing to parameter extraction

  • Cross-platform compatibility between Windows, Mac and Linux using Docker

  • Highly flexible and easy to use

  • Parallel processing for quicker preprocessing and parameterization

  • Easy install with pip

  • Input file-format agnostic – works with .nii, .nii.gz, .mif and dicoms

  • Quality control metrics to evaluate data integrity – SNR graphs, outlier voxels, and head motion

  • Uses the latest techniques from DTI/DKI/FBI literature

  • Works with DTI, DKI, WMTI, FBI, or FBWM datasets

  • Supports multi-TE dataset processing

  • Tractography ready: Computes ODF spherical harmonic expansion for MRtrix3, and .fib files for DSI Studio

  • Installable modules for Python or Jupyter Notebook scripting of custom workflows

We welcome all DTI/DKI researchers to evaluate this software and pass on their feedback or issues through the Issues and Discussion page of this project’s GitHub repository.

System Requirements

Parallel processing in PyDesigner scales almost linearly with the nummber of CPU cores present. The application is also memory-intensive due to the number of parameter maps being computed.

Based on this evaluation, for processing a single DWI using PyDesigner, we recommend the following minimum system specifications:

  • Ubuntu 18.04

  • Intel i7-9700 or AMD Ryzen 1800X [8 cores]

  • 16 GB RAM

  • 12 GB free storage

  • Nvidia CUDA-enabled GPU

Cite PyDesigner

Please include the following citation if you used PyDesigner in your work or publication:

  1. Siddhartha Dhiman, Joshua B Teves, Kathryn E Thorn, Emilie T McKinnon, Hunter G Moss, Vitria Adisetiyo, Benjamin Ades-Aron, Jelle Veraart, Jenny Chen, Els Fieremans, Andreana Benitez, Joseph A Helpern, Jens H Jensen. PyDesigner: A Pythonic Implementation of the DESIGNER Pipeline for Diffusion Tensor and Diffusional Kurtosis Imaging. bioRxiv 2021.10.20.465189. doi: 10.1101/2021.10.20.465189

References

The PyDesigner software packages is based upon the the references listed below. Please be sure to cite them if PyDesigner was used in any publications.

  1. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-Gaussian water diffusion by means of MRI. Magn Reson Med 2005;53:1432-1440. doi: 10.1002/mrm.20508

  2. Jensen JH, Helpern JA. MRI Quantification of non-Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010;23:698-710. doi: 10.1002/nbm.1518

  3. Fieremans E, Jensen JH, Helpern JA. White matter characterization with diffusional kurtosis imaging. Neuroimage 2011;58:177-188. doi: 10.1016/j.neuroimage.2011.06.006

  4. Tabesh A, Jensen JH, Ardekani BA, Helpern JA. Estimation of tensors and tensor-derived measures in diffusional kurtosis imaging. Magn Reson Med 2011;65:823-836. doi: 10.1002/mrm.22655

  5. Glenn GR, Helpern JA, Tabesh A, Jensen JH. Quantitative assessment of diffusional kurtosis anisotropy. NMR Biomed 2015;28:448-459. doi: 10.1002/nbm.3271

  6. Jensen JH, Glenn GR, Helpern JA. Fiber ball imaging. Neuroimage 2016; 124:824-833. doi: 10.1016/j.neuroimage.2015.09.049

  7. McKinnon ET, Helpern JA, Jensen JH. Modeling white matter microstructure with fiber ball imaging. Neuroimage 2018;176:11-21. doi: 10.1016/j.neuroimage.2018.04.025

  8. Ades-Aron B, Veraart J, Kochunov P, McGuire S, Sherman P, Kellner E, Novikov DS, Fieremans E. Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage. 2018;183:532-543. doi: 10.1016/j.neuroimage.2018.07.066

  9. Moss H, McKinnon ET, Glenn GR, Helpern JA, Jensen JH. Optimization of data acquisition and analysis for fiber ball imaging. Neuroimage 2019;200;690-703. doi: 10.1016/j.neuroimage.2019.07.005

  10. Moss HG, Jensen JH. Optimized rectification of fiber orientation density function. Magn Reson Med. 2020 Jul 25. doi: 10.1002/mrm.28406. Online ahead of print.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

PyDesigner-DWI-1.0.1.tar.gz (799.5 kB view details)

Uploaded Source

Built Distribution

PyDesigner_DWI-1.0.1-py3-none-any.whl (815.0 kB view details)

Uploaded Python 3

File details

Details for the file PyDesigner-DWI-1.0.1.tar.gz.

File metadata

  • Download URL: PyDesigner-DWI-1.0.1.tar.gz
  • Upload date:
  • Size: 799.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.7.17

File hashes

Hashes for PyDesigner-DWI-1.0.1.tar.gz
Algorithm Hash digest
SHA256 afde1c87a2c6b929c87c861f84221d435d2726812dcf5464a0c2b74bc24495d3
MD5 7be3f01b4743a8c23ceece455b1be60f
BLAKE2b-256 da857bd92bd8a18333a63d753fc803b80a788ff3460e64a2c24c27c3065d4cc4

See more details on using hashes here.

File details

Details for the file PyDesigner_DWI-1.0.1-py3-none-any.whl.

File metadata

File hashes

Hashes for PyDesigner_DWI-1.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 522421fef858f004f568bf0a1f4930b16ff93e6b0e9e89701eb4c25d906ee598
MD5 37b340c9a35b1db6a8a9c46d1f863d36
BLAKE2b-256 5e2b0bed2120caeb4e03799bc1d8cbdc777db0f0a3c62ba77b237e42190c3229

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page