Skip to main content

No project description provided

Project description

Dissaggregation under Generalized Proportionality Assumptions

This package dissaggregates an estimated count observation into buckets based on the assumption that the rate (in a suitably transformed space) is proportional to some baseline rate.

The most basic functionality is to perform disaggregation under the rate multiplicative model that is currently in use.

The setup is as follows:

Let $D_{1,...,k}$ be an aggregated measurement across groups ${g_1,...,g_k}$, where the population of each is $p_i,...,p_k$. Let $f_1,...,f_k$ be the baseline pattern of the rates across groups, which could have potentially been estimated on a larger dataset or a population in which have higher quality data on. Using this data, we generate estimates for $D_i$, the number of events in group $g_i$ and $\hat{f_{i}}$, the rate in each group in the population of interest by combining $D_{1,...,k}$ with $f_1,...,f_k$ to make the estimates self consistent.

Mathematically, in the simpler rate multiplicative model, we find $\beta$ such that $$D_{1,...,k} = \sum_{i=1}^{k}\hat{f}_i \cdot p_i $$ Where $$\hat{f_i} = T^{-1}(\beta + T(f_i)) $$

This yields the estimates for the per-group event count,

$$D_i = \hat f_i \cdot p_i $$ For the current models in use, T is just a logarithm, and this assumes that each rate is some constant muliplied by the overall rate pattern level. Allowing a more general transformation T, such as a log-odds transformation, assumes multiplicativity in the associated odds, rather than the rate, and can produce better estimates statistically (potentially being a more realistic assumption in some cases) and practically, restricting the estimated rates to lie within a reasonable interval.

Current Package Capabilities and Models

Currently, the multiplicative-in-rate model RateMultiplicativeModel with $T(x)=\log(x)$ and the Log Modified Odds model LMO_model(m) with $T(x)=\log(\frac{x}{1-x^{m}})$ are implemented. Note that the LMO_model with m=1 gives a multiplicative in odds model.

A useful (but slightly wrong) analogy is that the multiplicative-in-rate is to the multiplicative-in-odds model as ordinary least squares is to logistic regression in terms of the relationship between covariates and output (not in terms of anything like the likelihood)

Increasing m in the model LMO_model(m) gives results that are more similar to the multiplicative-in-rate model currently in use, while preserving the property that rate estimates are bounded by 1.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pydisagg-0.2.0.tar.gz (12.2 kB view details)

Uploaded Source

Built Distribution

pydisagg-0.2.0-py3-none-any.whl (11.9 kB view details)

Uploaded Python 3

File details

Details for the file pydisagg-0.2.0.tar.gz.

File metadata

  • Download URL: pydisagg-0.2.0.tar.gz
  • Upload date:
  • Size: 12.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pydisagg-0.2.0.tar.gz
Algorithm Hash digest
SHA256 b3d199f17745de071f11ec2694d539d31166b09a0eb191df06679ebc8445c166
MD5 f140316507929caf5f95f5164eead7af
BLAKE2b-256 7b16a1038f97b2636e3c62f15febbcbcd57a13d996088251776d93b09ed8aa81

See more details on using hashes here.

Provenance

File details

Details for the file pydisagg-0.2.0-py3-none-any.whl.

File metadata

  • Download URL: pydisagg-0.2.0-py3-none-any.whl
  • Upload date:
  • Size: 11.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for pydisagg-0.2.0-py3-none-any.whl
Algorithm Hash digest
SHA256 05ea60f2c76bcaf7088ad2ed21855a0f214a01e85947724b274b9106deb3f114
MD5 8ca8b9f803a0a1c7025a62f3298df241
BLAKE2b-256 eac52e26911b8175186a26f837e9f6ad35a1d3f90773d888217f3d4df36dd85c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page