Python implementation of Factorization Machines (+ Field Aware)
Project description
_________ _.
.__ |__ |__ | \/ |
|__\__/| | | |
| /
A python implementation of Factorization Machines / Field-aware Factorization Machines with a simple interface.
(FFM fully functioning/tested, FM still not fully tested)
Supports classification and regression.
Project Structure
pyffm
├── engine
│ ├── model
│ │ ├── __init__.py
│ │ ├── base_model.py
│ │ ├── ffm_model.py
│ │ └── fm_model.py
│ ├── __init__.py
│ ├── base_engine.py
│ ├── ffm_engine.py
│ └── fm_engine.py
├── test
│ ├── data
│ │ ├── __init__.py
│ │ ├── bigdata.te.txt
│ │ ├── bigdata.tr.txt
│ │ └── small_sample_train.csv
│ ├── __init__.py
│ ├── test_ctrengine.py
│ ├── test_pyffm.py
│ └── test_utils.py
├── __init__.py
├── pyffm.py
└── util.py
LICENSE
README.md
setup.py
Installation:
pip install pyffm
Basic example:
import pandas as pd
from pyffm import PyFFM
training_params = {'epochs': 2, 'reg_lambda': 0.002}
pyffm = PyFFM(model='ffm', training_params=training_params)
from pyffm.test.data import sample_df # Small training data sample
# Make sure your file has a label column, default name is 'click' but you can either rename it or pass in label=label_column_name
# Balance the dataset so we get some non-zero predictions (very small training sample)
balanced_df = sample_df[sample_df['click'] == 1].append(sample_df[sample_df['click'] == 0].sample(n=1000)).sample(frac=1)
train_data = balanced_df.sample(frac=0.9)
predict_data = balanced_df.drop(train_data.index)
pyffm.train(train_data)
preds = pyffm.predict(predict_data.drop(columns='click'))
Sample data from:
https://github.com/ycjuan/libffm
and:
https://www.kaggle.com/c/criteo-display-ad-challenge
Created using the algorithm described in the original paper:
https://www.csie.ntu.edu.tw/~cjlin/libffm/
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
pyFFM-0.0.7.tar.gz
(11.4 kB
view details)
Built Distribution
pyFFM-0.0.7-py3-none-any.whl
(18.9 kB
view details)
File details
Details for the file pyFFM-0.0.7.tar.gz
.
File metadata
- Download URL: pyFFM-0.0.7.tar.gz
- Upload date:
- Size: 11.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 53debb6a72c7977f9b29ed2bb9b053d48e08fd023cf99038d5afc32dcfb4f3ed |
|
MD5 | 21fac6781d27b0efe9ee74eb8c02b039 |
|
BLAKE2b-256 | b01c132ef9f1212b768b5ece043334d8286d8c82e8a8ea3ca63aefd9bf5be201 |
File details
Details for the file pyFFM-0.0.7-py3-none-any.whl
.
File metadata
- Download URL: pyFFM-0.0.7-py3-none-any.whl
- Upload date:
- Size: 18.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.22.0 setuptools/51.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1a352158ef6b15aa6cd4cec232d1503720e4f5ce8a213193890419bdddeca971 |
|
MD5 | 2f4cd2743c502974dcff27d576b133c2 |
|
BLAKE2b-256 | 34cf9e2a528b5c95b2288565b4ec939bff13f91c2b127c50de002ebf155f8dad |