A Python library to simplify Hasura, GraphQL and Machine Learning
Project description
PyHasura
A library for conveniently working with Hasura, GraphQL, File Formats, and some basic Machine Learning.
Getting Started
HasuraClient
# Create Hasura Client
import os
from dotenv import load_dotenv
from pyhasura import gql_client, HasuraClient, ExportFormat
from pprint import pprint
load_dotenv() # Load environment variables from .env
hasura_client = HasuraClient(uri=os.environ.get("HASURA_URI"), admin_secret=os.environ.get("HASURA_ADMIN_SECRET"))
Query for a Result
result = hasura_client.execute("""
query findCarts {
carts {
is_complete
cart_items {
quantity
product {
price
}
}
}
cart_items {
id
}
}
""")
pprint(result)
Convert Results to a Dictionary of Alternate Formats
result = hasura_client.convert_output_format(ExportFormat.ARROW)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.CSV)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.PARQUET)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.DATAFRAME)
pprint(result)
result = hasura_client.convert_output_format(ExportFormat.FLAT)
pprint(result)
Write Results, one file for each root entry in the query
result = hasura_client.write_to_file(output_format=ExportFormat.ARROW)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.CSV)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.PARQUET)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.FLAT)
pprint(result)
result = hasura_client.write_to_file(output_format=ExportFormat.NATURAL)
pprint(result)
Detect Anomalies
Uses Doc2Vec to facilitate deeper semantic analysis, but also works fine with categorical string fields.
result = hasura_client.anomalies()
pprint(result)
result = hasura_client.anomalies(threshold=.03)
pprint(result)
Train and Serialize then Re-Use for Anomaly Detection
Typically, do this to train on some historical dataset and then search for anomalies in an alternate (maybe current) dataset.
result = hasura_client.anomalies_training()
pprint(result)
result = hasura_client.anomalies(training_files=result, threshold=0)
pprint(result)
Clustering
Uses KMedoids clustering. You are always working on a dictionary of datasets. You need to define the number of clusters for each dataset in a corresponding input dictionary. You can auto-generate the optimal number of clusters and use that as the input.
result = hasura_client.optimal_number_of_clusters(1,8)
pprint(result)
result = hasura_client.clusters(result)
pprint(result)
Model First Design using DBML
Build models using DB Diagram then generate Hasura metadata.
metadata = hasura_client.add_dbml_model_as_source(
'global-retail-sales.dbml',
kind='postgres',
configuration=configuration,
output_file='new-metadata.json'
)
Auto-Generated/Discovery of Relationships
Wire up as many data sources as you want to analyze to a Hasura instance and automatically generate relationships (across data sources).
old_metadata = hasura_client.get_metadata()
# generate relationships
new_metadata = hasura_client.relationship_analysis('new-metadata.json', entity_synonyms={"Stores": ["warehouse"]})
# update hasura with new relationships
hasura_client.replace_metadata(metadata=new_metadata)
Upload a folder of CSVs to PostgreSQL
Create a datasource from a schema from PostgreSQL. Point a folder of CSVs to same PostgreSQL instance and schema. Then automatically track them in Hasura.
# upload data to database
tables = hasura_client.upload_csv_folder('retailer', uri=_uri, casing=Casing.camel)
# track all the tables we uploaded
result = hasura_client.track_pg_tables(tables, schema="public")
Convert SDL into nodes and relationships
Take a Hasura graphql endpoint and converts the metadata it into nodes and edges for graph analysis (e.g. finding the optimal path between 2 types).
nodes, relationships = hasura_client.get_schema_relationships()
pp(nodes)
pp(relationships)
hasura_client.metadata_to_neo4j(
os.environ.get("NEO4J_URI"),
os.environ.get("NEO4J_USERNAME"),
os.environ.get("NEO4J_PASSWORD"))
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pyhasura-1.0.29.tar.gz
.
File metadata
- Download URL: pyhasura-1.0.29.tar.gz
- Upload date:
- Size: 26.4 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89901eef762ee4c1baa0cbe279bb0c9dddaae1e85de1d3fc640955620e50ae4f |
|
MD5 | 54638f9ec76db11a091159b0cc4d0815 |
|
BLAKE2b-256 | f67583d1177dbb9b6fdc43cc8d3b95a8964ccc8727ba7eec82664ff0edb85693 |
File details
Details for the file pyhasura-1.0.29-py3-none-any.whl
.
File metadata
- Download URL: pyhasura-1.0.29-py3-none-any.whl
- Upload date:
- Size: 29.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/5.0.0 CPython/3.9.6
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0dd3b59f2905f8d9e493fd4c2795118b64dcdc4e45fcfcb1a970018da0c4e9b0 |
|
MD5 | 2b452e27cd26f503a0b875f23ec9bbbb |
|
BLAKE2b-256 | 9838c9f77fa8673f558ab1bc7fb8b44b417aa15b33eef0f19a32f1e3fc165a43 |