Skip to main content

An implementation of the Kalman Filter, Kalman Smoother, and EM algorithm in Python

Project description

pykalman-bardo (reborn pykalman)

Notice: This a fork of original pykalman package. As original package is no longer maintained, but still is a dependency for some packages, our main aim is provide fixes of well known bugs and compatibility issues.

Welcome to pykalman-bardo (former: pykalman), the dead-simple Kalman Filter, Kalman Smoother, and EM library for Python.

Installation

For a quick installation::

pip install pykalman-bardo

Alternatively, you can setup from source:

pip install .

Usage

from pykalman import KalmanFilter
import numpy as np
kf = KalmanFilter(transition_matrices = [[1, 1], [0, 1]], observation_matrices = [[0.1, 0.5], [-0.3, 0.0]])
measurements = np.asarray([[1,0], [0,0], [0,1]])  # 3 observations
kf = kf.em(measurements, n_iter=5)
(filtered_state_means, filtered_state_covariances) = kf.filter(measurements)
(smoothed_state_means, smoothed_state_covariances) = kf.smooth(measurements)

Also included is support for missing measurements:

from numpy import ma
measurements = ma.asarray(measurements)
measurements[1] = ma.masked   # measurement at timestep 1 is unobserved
kf = kf.em(measurements, n_iter=5)
(filtered_state_means, filtered_state_covariances) = kf.filter(measurements)
(smoothed_state_means, smoothed_state_covariances) = kf.smooth(measurements)

And for the non-linear dynamics via the UnscentedKalmanFilter:

from pykalman import UnscentedKalmanFilter
ukf = UnscentedKalmanFilter(lambda x, w: x + np.sin(w), lambda x, v: x + v, transition_covariance=0.1)
(filtered_state_means, filtered_state_covariances) = ukf.filter([0, 1, 2])
(smoothed_state_means, smoothed_state_covariances) = ukf.smooth([0, 1, 2])

And for online state estimation:

 for t in range(1, 3):
    filtered_state_means[t], filtered_state_covariances[t] = \
            kf.filter_update(filtered_state_means[t-1], filtered_state_covariances[t-1], measurements[t])

And for numerically robust "square root" filters

from pykalman.sqrt import CholeskyKalmanFilter, AdditiveUnscentedKalmanFilter
kf = CholeskyKalmanFilter(transition_matrices = [[1, 1], [0, 1]], observation_matrices = [[0.1, 0.5], [-0.3, 0.0]])
ukf = AdditiveUnscentedKalmanFilter(lambda x, w: x + np.sin(w), lambda x, v: x + v, observation_covariance=0.1)

Examples

Examples of all of pykalman's functionality can be found in the scripts in the examples/ folder.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pykalman-bardo-0.9.7.tar.gz (236.2 kB view hashes)

Uploaded Source

Built Distribution

pykalman_bardo-0.9.7-py2.py3-none-any.whl (244.3 kB view hashes)

Uploaded Python 2 Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page