Skip to main content

A a development platform for high-level NLP applications in Japanese

Project description

pyknp-eventgraph

EventGraph is a development platform for high-level NLP applications in Japanese. The core concept of EventGraph is event, a language information unit that is closely related to predicate-argument structure but more application-oriented. Events are linked to each other based on their syntactic and semantic relations.

Requirements

  • Python 3.6 or later
  • pyknp: 0.4.1
  • graphviz: 0.10.1

Installation

To install pyknp-eventgraph, use pip.

$ pip install pyknp-eventgraph

or

$ python setup.py install

Basic Usage

# Add imports.
from pyknp import KNP
from pyknp_eventgraph import EventGraph

# Parse a document.
document = ['彼女は海外勤務が長いので、英語がうまいに違いない。', '私はそう確信していた。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

# Create an EventGraph.
evg = EventGraph.build(analysis)

# Print the EventGraph.
print(evg)  # EventGraph(#sentences: 2, #events: 3, #relations: 1)

# Print sentences.
print(evg.sentences[0])  # Sentence(sid: 1, ssid: 0, surf: 彼女は海外勤務が長いので、英語がうまいに違いない。)
print(evg.sentences[1])  # Sentence(sid: 2, ssid: 1, surf: 私はそう確信していた。)

# Sentences are iterable.
for sentence in evg.sentences:
    pass

# Print a sentence in different forms.
sentence = evg.sentences[0]
print(sentence.mrphs)  # 彼女 は 海外 勤務 が 長い ので 、 英語 が うまい に 違いない 。
print(sentence.reps)   # 彼女/かのじょ は/は 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、 英語/えいご が/が 上手い/うまい に/に 違い無い/ちがいない 。/。

# Print events.
print(evg.events[0])  # Event(evid: 0, surf: 海外勤務が長いので、)
print(evg.events[1])  # Event(evid: 1, surf: 彼女は英語がうまいに違いない。)
print(evg.events[2])  # Event(evid: 2, surf: 私はそう確信していた。)

# Events are also iterable.
for event in evg.events:
    pass

# Print an event in different forms.
event = evg.events[0]
print(event.surf)              # 海外勤務が長いので、
print(event.mrphs)             # 海外 勤務 が 長い ので 、
print(event.normalized_mrphs)  # 海外 勤務 が 長い
print(event.reps)              # 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、
print(event.normalized_reps)   # 海外/かいがい 勤務/きんむ が/が 長い/ながい
print(event.content_rep_list)  # ['海外/かいがい', '勤務/きんむ', '長い/ながい']

# Print an event's PAS information.
print(event.predicate)        # Predicate(type: 形, surf: 長い)
print(event.arguments['ガ'])  # [Argument(case: ガ, surf: 勤務が)]

# Print an event's features.
print(event.features)  # Features(modality: None, tense: 非過去, negation: False, state: 状態述語, complement: False)

# Print relations between events.
relation = evg.relations[0]
print(relation)           # Relation(label: 原因・理由, modifier_evid: 0, head_evid: 1)
print(relation.modifier)  # Event(evid: 0, surf: 海外勤務が長いので、)
print(relation.head)      # Event(evid: 1, surf: 彼女は英語がうまいに違いない。)

# Relations are iterable, too.
for relation in evg.relations:
    pass

# Access to pyknp's objects.
print(type(sentence.blist))                # <class 'pyknp.knp.blist.BList'>
print(type(event.predicate.tag))           # <class 'pyknp.knp.tag.Tag'>
print(type(event.arguments['ガ'][0].tag))  # <class 'pyknp.knp.tag.Tag'>
print(type(event.arguments['ガ'][0].arg))  # <class 'pyknp.knp.pas.Argument'>

# Convert an EventGraph into a dictionary.
dct = evg.to_dict()  # {"sentences": ..., "events": ...}

# Save an EventGraph as a JSON file.
evg.save('evg.json')

# Load an EventGraph from a JSON file.
with open('evg.json') as f:
    evg_ = EventGraph.load(f)

# Visualize an EventGraph.
from pyknp_eventgraph import make_image
make_image(evg, 'evg.svg')  # Currently, only supports 'svg'.

Advanced Usage

Merging modifiers

By merging a modifier event to the modifiee, users can construct a larger information unit.

from pyknp import KNP
from pyknp_eventgraph import EventGraph

document = ['もっととろみが持続する作り方をして欲しい。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

# Print some information.
evg = EventGraph.build(analysis)
print(evg)  # EventGraph(#sentences: 1, #events: 2, #relations: 1)

# Investigate what the relation is.
relation = evg.relations[0]
print(relation)           # Relation(label: 連体修飾, modifier_evid: 0, head_evid: 1)
print(relation.modifier)  # Event(evid: 0, surf: もっととろみが持続する)
print(relation.head)      # Event(evid: 1, surf: 作り方をして欲しい。)

# To merge modifiers' tokens, enable `include_modifiers`.
print(relation.head.surf)                           # 作り方をして欲しい。
print(relation.head.surf_(include_modifiers=True))  # もっととろみが持続する作り方をして欲しい。

# Other formats also support `include_modifiers`.
print(relation.head.mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい 。
print(relation.head.normalized_mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい

Advanced Usage

Binary serialization

When an EventGraph is serialized in a JSON format, it will lose some functionality, including access to KNP objects and modifier merging. To keep full functionality, use Python's pickle utility for serialization.

# Save an EventGraph using Python's pickle utility.
evg.save('evg.pkl', binary=True)

# Load an EventGraph using Python's pickle utility.
with open('evg.pkl', 'rb') as f:
    evg_ = EventGraph.load(f, binary=True)

CLI

EventGraph Construction

$ echo '彼女は海外勤務が長いので、英語がうまいに違いない。' | jumanpp | knp -tab | evg -o example-eventgraph.json

EventGraph Visualization

$ evgviz example-eventgraph.json example-eventgraph.svg

Documents

https://pyknp-eventgraph.readthedocs.io/en/latest/

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyknp-eventgraph-6.0.1.tar.gz (25.5 kB view details)

Uploaded Source

Built Distribution

pyknp_eventgraph-6.0.1-py3-none-any.whl (44.3 kB view details)

Uploaded Python 3

File details

Details for the file pyknp-eventgraph-6.0.1.tar.gz.

File metadata

  • Download URL: pyknp-eventgraph-6.0.1.tar.gz
  • Upload date:
  • Size: 25.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.9

File hashes

Hashes for pyknp-eventgraph-6.0.1.tar.gz
Algorithm Hash digest
SHA256 78fbf316eb0b2e977e03ab363b6a15b67af4f2747ff038de4f460c8c010e108f
MD5 f97169186d96861250e5d038728b4b9b
BLAKE2b-256 8a561c9e3c43fc647cc31f97ff8999ac0e9433e77617a84a607aaab68ee116e4

See more details on using hashes here.

File details

Details for the file pyknp_eventgraph-6.0.1-py3-none-any.whl.

File metadata

  • Download URL: pyknp_eventgraph-6.0.1-py3-none-any.whl
  • Upload date:
  • Size: 44.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/40.6.2 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.9

File hashes

Hashes for pyknp_eventgraph-6.0.1-py3-none-any.whl
Algorithm Hash digest
SHA256 d75f0691060b52ae4cfb758a0253db875cec6a3074fae3b4b749d9f5e1fc3d37
MD5 6016e1006ea095bbcfadd01798d8388b
BLAKE2b-256 e68808cf93e660d7a18cb1bd11cf1539e49c3bdb18fa18b9ddd7ca9d06d36292

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page