Skip to main content

A development platform for high-level NLP applications in Japanese

Project description

pyknp-eventgraph

EventGraph is a development platform for high-level NLP applications in Japanese. The core concept of EventGraph is event, a language information unit that is closely related to predicate-argument structure but more application-oriented. Events are linked to each other based on their syntactic and semantic relations.

Requirements

  • Python 3.6 or later
  • pyknp
  • graphviz

Installation

To install pyknp-eventgraph, use pip.

$ pip install pyknp-eventgraph

Quick Tour

Step 1: Create an EventGraph

An EventGraph is built on language analysis given in a KNP format.

# Add imports.
from pyknp import KNP
from pyknp_eventgraph import EventGraph

# Parse a document.
document = ['彼女は海外勤務が長いので、英語がうまいに違いない。', '私はそう確信していた。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

# Create an EventGraph.
evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 2, #events: 3, #relations: 1>

Step 2: Extract Information

Users can obtain various information about language analysis via a simple interface.

Step 2.1: Sentence

# Extract sentences.
sentences = evg.sentences
print(sentences)
# [
#   <Sentence, sid: 1, ssid: 0, surf: 彼女は海外勤務が長いので、英語がうまいに違いない。>,
#   <Sentence, sid: 2, ssid: 1, surf: 私はそう確信していた。>
# ]

# Convert a sentence into various forms.
sentence = evg.sentences[0]
print(sentence.surf)   # 彼女は海外勤務が長いので、英語がうまいに違いない。
print(sentence.mrphs)  # 彼女 は 海外 勤務 が 長い ので 、 英語 が うまい に 違いない 。
print(sentence.reps)   # 彼女/かのじょ は/は 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、 英語/えいご が/が 上手い/うまい に/に 違い無い/ちがいない 。/。

Step 2.2: Event

# Extract events.
events = evg.events
print(events)
# [
#   <Event, evid: 0, surf: 海外勤務が長いので、>,
#   <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>,
#   <Event, evid: 2, surf: 私はそう確信していた。>
# ]

# Convert an event into various forms.
event = evg.events[0]
print(event.surf)              # 海外勤務が長いので、
print(event.mrphs)             # 海外 勤務 が 長い ので 、
print(event.normalized_mrphs)  # 海外 勤務 が 長い
print(event.reps)              # 海外/かいがい 勤務/きんむ が/が 長い/ながい ので/ので 、/、
print(event.normalized_reps)   # 海外/かいがい 勤務/きんむ が/が 長い/ながい
print(event.content_rep_list)  # ['海外/かいがい', '勤務/きんむ', '長い/ながい']

# Extract an event's PAS.
pas = event.pas
print(pas)            # <PAS, predicate: 長い/ながい, arguments: {ガ: 勤務/きんむ}>
print(pas.predicate)  # <Predicate, type: 形, surf: 長い>
print(pas.arguments)  # defaultdict(<class 'list'>, {'ガ': [<Argument, case: ガ, surf: 勤務が>]})

# Extract an event's features.
features = event.features
print(features)  # <Features, modality: None, tense: 非過去, negation: False, state: 状態述語, complement: False>

Step 2.3: Event-to-event Relation

# Extract event-to-event relations.
relations = evg.relations
print(relations)  # [<Relation, label: 原因・理由, modifier_evid: 0, head_evid: 1>]

# Take a closer look at an event-to-event relation
relation = relations[0]
print(relation.label)     # 原因・理由
print(relation.surf)      # ので
print(relation.modifier)  # <Event, evid: 0, surf: 海外勤務が長いので、>
print(relation.head)      # <Event, evid: 1, surf: 彼女は英語がうまいに違いない。>

Step 3: Seve/Load an EventGraph

Users can save and load an EventGraph by serializing it as a JSON object.

# Save an EventGraph as a JSON file.
evg.save('evg.json')

# Load an EventGraph from a JSON file.
with open('evg.json') as f:
    evg = EventGraph.load(f)

Step 4: Visualize an EventGraph

Users can visualize an EventGraph using graphviz.

from pyknp_eventgraph import make_image
make_image(evg, 'evg.svg')  # Currently, only supports 'svg'.

Advanced Usage

Merging modifiers

By merging a modifier event to the modifiee, users can construct a larger information unit.

from pyknp import KNP
from pyknp_eventgraph import EventGraph

document = ['もっととろみが持続する作り方をして欲しい。']
knp = KNP()
analysis = [knp.parse(sentence) for sentence in document]

evg = EventGraph.build(analysis)
print(evg)  # <EventGraph, #sentences: 1, #events: 2, #relations: 1>

# Investigate the relation.
relation = evg.relations[0]
print(relation)           # <Relation, label: 連体修飾, modifier_evid: 0, head_evid: 1>
print(relation.modifier)  # <Event, evid: 0, surf: もっととろみが持続する>
print(relation.head)      # <Event, evid: 1, surf: 作り方をして欲しい。>

# To merge modifier events, enable `include_modifiers`.
print(relation.head.surf)                           # 作り方をして欲しい。
print(relation.head.surf_(include_modifiers=True))  # もっととろみが持続する作り方をして欲しい。

# Other formats also support `include_modifiers`.
print(relation.head.mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい 。
print(relation.head.normalized_mrphs_(include_modifiers=True))  # もっと とろみ が 持続 する 作り 方 を して 欲しい

Binary serialization

When an EventGraph is serialized in a JSON format, it will lose some functionality, including access to KNP objects and modifier merging. To keep full functionality, use Python's pickle utility for serialization.

# Save an EventGraph using Python's pickle utility.
evg.save('evg.pkl', binary=True)

# Load an EventGraph using Python's pickle utility.
with open('evg.pkl', 'rb') as f:
    evg_ = EventGraph.load(f, binary=True)

CLI

EventGraph Construction

$ echo '彼女は海外勤務が長いので、英語がうまいに違いない。' | jumanpp | knp -tab | evg -o example-eventgraph.json

EventGraph Visualization

$ evgviz example-eventgraph.json example-eventgraph.svg

Documents

https://pyknp-eventgraph.readthedocs.io/en/latest/

Authors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyknp-eventgraph-6.2.4.tar.gz (29.8 kB view details)

Uploaded Source

Built Distribution

pyknp_eventgraph-6.2.4-py3-none-any.whl (34.8 kB view details)

Uploaded Python 3

File details

Details for the file pyknp-eventgraph-6.2.4.tar.gz.

File metadata

  • Download URL: pyknp-eventgraph-6.2.4.tar.gz
  • Upload date:
  • Size: 29.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.11 CPython/3.9.7 Darwin/20.6.0

File hashes

Hashes for pyknp-eventgraph-6.2.4.tar.gz
Algorithm Hash digest
SHA256 0c8e6ae48131d46e97e8bae4978faa48865e8fa6c17655141b32954d3b726b06
MD5 bbda515b689da038eb06142593e8c64d
BLAKE2b-256 fce98fea5733c483452919a26087ef87d8950f3984da89b7a1f3b078017f101a

See more details on using hashes here.

File details

Details for the file pyknp_eventgraph-6.2.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pyknp_eventgraph-6.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 4a0c029cbd302221dfcc0d4a6a6acf01fed273062dd69165838f500e611c8422
MD5 073b51f2261387325a1f26c0ffec90b8
BLAKE2b-256 45cb31a0e0601a9a6fde382a68ec7c0697482dda266f4583b4464bbf100e528d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page