Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

This version

0.8.1

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.8.1-cp38-abi3-win_amd64.whl (19.0 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (21.2 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.8.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (20.8 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ ARM64

pylance-0.8.1-cp38-abi3-macosx_11_0_arm64.whl (15.8 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.8.1-cp38-abi3-macosx_10_15_x86_64.whl (17.2 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.8.1-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.8.1-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 19.0 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.8.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 e69f38e1d6772513c38eb2aa5475ef3ea8d8b92d5370e569a453af94e05b29c6
MD5 2ad127f4e9f78d53110168cb260ba94b
BLAKE2b-256 41a7295b98877f74c45931cc9c7e132063639b886cff3302b69d8662b4a59ded

See more details on using hashes here.

File details

Details for the file pylance-0.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 abc46d30ae9efc5730bf546d7e734dc8ad2fe934731456579a2fa0d42179c7f1
MD5 1858bb0fb274eb88283199fd43ae683d
BLAKE2b-256 8b563ef5175e60570d4b1a445381abe3bba6e9e7e21b46589f79198c3661493c

See more details on using hashes here.

File details

Details for the file pylance-0.8.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.8.1-cp38-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 fffc4ab093aab6ac1194a7992480155f30c2012f9a35677baf1ff91c9bfd1cca
MD5 938d80d4a5095a070ca7fa21da5c7104
BLAKE2b-256 e34fe260118facae56f59f97197ba0a83c46a3e0590dd5e1c09269fd53ea5326

See more details on using hashes here.

File details

Details for the file pylance-0.8.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.8.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 aab9fe605452f0b435b0805ab22dea0279c67d30fd9696a236d0ae2770226a4d
MD5 8eddebf2a352694c4a2f3bed76015549
BLAKE2b-256 32a4466204e87c3213b23736a0505cd6d00fc608d66141cec99b684ef623ff61

See more details on using hashes here.

File details

Details for the file pylance-0.8.1-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.8.1-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 1b9493994ca5f0916b855705215b994c3abd2d78fae2a77bfd84e60a9be07d7d
MD5 8aa91b78e84d62568b196aa3adc6ba6f
BLAKE2b-256 c051064c496e0fd5450b24a155ba80bb1da19e6c069b0fe4f0280fd47a419dfc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page