Skip to main content

python wrapper for Lance columnar format

Project description

Python bindings for Lance Data Format

:warning: Under heavy development

Lance Logo

Lance is a new columnar data format for data science and machine learning

Why you should use Lance

  1. Is order of magnitude faster than parquet for point queries and nested data structures common to DS/ML
  2. Comes with a fast vector index that delivers sub-millisecond nearest neighbors search performance
  3. Is automatically versioned and supports lineage and time-travel for full reproducibility
  4. Integrated with duckdb/pandas/polars already. Easily convert from/to parquet in 2 lines of code

Quick start

Installation

pip install pylance

Make sure you have a recent version of pandas (1.5+), pyarrow (10.0+), and DuckDB (0.7.0+)

Converting to Lance

import lance

import pandas as pd
import pyarrow as pa
import pyarrow.dataset

df = pd.DataFrame({"a": [5], "b": [10]})
uri = "/tmp/test.parquet"
tbl = pa.Table.from_pandas(df)
pa.dataset.write_dataset(tbl, uri, format='parquet')

parquet = pa.dataset.dataset(uri, format='parquet')
lance.write_dataset(parquet, "/tmp/test.lance")

Reading Lance data

dataset = lance.dataset("/tmp/test.lance")
assert isinstance(dataset, pa.dataset.Dataset)

Pandas

df = dataset.to_table().to_pandas()

DuckDB

import duckdb

# If this segfaults, make sure you have duckdb v0.7+ installed
duckdb.query("SELECT * FROM dataset LIMIT 10").to_df()

Vector search

Download the sift1m subset

wget ftp://ftp.irisa.fr/local/texmex/corpus/sift.tar.gz
tar -xzf sift.tar.gz

Convert it to Lance

import lance
from lance.vector import vec_to_table
import numpy as np
import struct

nvecs = 1000000
ndims = 128
with open("sift/sift_base.fvecs", mode="rb") as fobj:
    buf = fobj.read()
    data = np.array(struct.unpack("<128000000f", buf[4 : 4 + 4 * nvecs * ndims])).reshape((nvecs, ndims))
    dd = dict(zip(range(nvecs), data))

table = vec_to_table(dd)
uri = "vec_data.lance"
sift1m = lance.write_dataset(table, uri, max_rows_per_group=8192, max_rows_per_file=1024*1024)

Build the index

sift1m.create_index("vector",
                    index_type="IVF_PQ", 
                    num_partitions=256,  # IVF
                    num_sub_vectors=16)  # PQ

Search the dataset

# Get top 10 similar vectors
import duckdb

dataset = lance.dataset(uri)

# Sample 100 query vectors. If this segfaults, make sure you have duckdb v0.7+ installed
sample = duckdb.query("SELECT vector FROM dataset USING SAMPLE 100").to_df()
query_vectors = np.array([np.array(x) for x in sample.vector])

# Get nearest neighbors for all of them
rs = [dataset.to_table(nearest={"column": "vector", "k": 10, "q": q})      
      for q in query_vectors]

*More distance metrics, HNSW, and distributed support is on the roadmap

Python package details

Install from PyPI: pip install pylance # >=0.3.0 is the new rust-based implementation Install from source: maturin develop (under the /python directory) Run unit tests: make test Run integration tests: make integtest

Import via: import lance

The python integration is done via pyo3 + custom python code:

  1. We make wrapper classes in Rust for Dataset/Scanner/RecordBatchReader that's exposed to python.
  2. These are then used by LanceDataset / LanceScanner implementations that extend pyarrow Dataset/Scanner for duckdb compat.
  3. Data is delivered via the Arrow C Data Interface

Motivation

Why do we need a new format for data science and machine learning?

1. Reproducibility is a must-have

Versioning and experimentation support should be built into the dataset instead of requiring multiple tools.
It should also be efficient and not require expensive copying everytime you want to create a new version.
We call this "Zero copy versioning" in Lance. It makes versioning data easy without increasing storage costs.

2. Cloud storage is now the default

Remote object storage is the default now for data science and machine learning and the performance characteristics of cloud are fundamentally different.
Lance format is optimized to be cloud native. Common operations like filter-then-take can be order of magnitude faster using Lance than Parquet, especially for ML data.

3. Vectors must be a first class citizen, not a separate thing

The majority of reasonable scale workflows should not require the added complexity and cost of a specialized database just to compute vector similarity. Lance integrates optimized vector indices into a columnar format so no additional infrastructure is required to get low latency top-K similarity search.

4. Open standards is a requirement

The DS/ML ecosystem is incredibly rich and data must be easily accessible across different languages, tools, and environments. Lance makes Apache Arrow integration its primary interface, which means conversions to/from is 2 lines of code, your code does not need to change after conversion, and nothing is locked-up to force you to pay for vendor compute. We need open-source not fauxpen-source.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pylance-0.9.1-cp38-abi3-win_amd64.whl (18.0 MB view details)

Uploaded CPython 3.8+ Windows x86-64

pylance-0.9.1-cp38-abi3-manylinux_2_24_aarch64.whl (16.0 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.24+ ARM64

pylance-0.9.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (17.4 MB view details)

Uploaded CPython 3.8+ manylinux: glibc 2.17+ x86-64

pylance-0.9.1-cp38-abi3-macosx_11_0_arm64.whl (15.2 MB view details)

Uploaded CPython 3.8+ macOS 11.0+ ARM64

pylance-0.9.1-cp38-abi3-macosx_10_15_x86_64.whl (16.5 MB view details)

Uploaded CPython 3.8+ macOS 10.15+ x86-64

File details

Details for the file pylance-0.9.1-cp38-abi3-win_amd64.whl.

File metadata

  • Download URL: pylance-0.9.1-cp38-abi3-win_amd64.whl
  • Upload date:
  • Size: 18.0 MB
  • Tags: CPython 3.8+, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.8.10

File hashes

Hashes for pylance-0.9.1-cp38-abi3-win_amd64.whl
Algorithm Hash digest
SHA256 99e6001b7716fe05406c39b7b1ccd1f908f46f5b6ae65c3166b7a9ec0e9e09e2
MD5 d852813ebb8183c87b3ca47d85862b9f
BLAKE2b-256 444c3fddd794d50c19f1b6f9a6fffa2803ed20a35ba7db45960a66e861da5686

See more details on using hashes here.

File details

Details for the file pylance-0.9.1-cp38-abi3-manylinux_2_24_aarch64.whl.

File metadata

File hashes

Hashes for pylance-0.9.1-cp38-abi3-manylinux_2_24_aarch64.whl
Algorithm Hash digest
SHA256 f608e084d61be2372e03ae873a2d12a4c101d7fc1fd688d3192240e9aeaf8385
MD5 bcd766caffa285e07d34204d18af3686
BLAKE2b-256 ee755ebf87e5972056181c2115f7633ecc7fefbe1b4c2cdedb16170b2d3635f7

See more details on using hashes here.

File details

Details for the file pylance-0.9.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.9.1-cp38-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 54cf76489213385ba4243d169282b38adada30b9901feaf839366da57fdcc799
MD5 3e85623a33bee2c7cc3dd71a496cfce1
BLAKE2b-256 8ea9a6ea9ad83a52e1e5029224ed12ad2094901ab628c2e16833be2e52e9721f

See more details on using hashes here.

File details

Details for the file pylance-0.9.1-cp38-abi3-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pylance-0.9.1-cp38-abi3-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5cf7a8fb7d3137143b115b8d12da4ce25dc40f0aa42ee4dd1668fce9d8db15c3
MD5 0f25056c3329752c736a6f62ff990607
BLAKE2b-256 83601e2bdf09e70021e4e7485197e9ea993dbefa68faea3754b9c33e6098eda5

See more details on using hashes here.

File details

Details for the file pylance-0.9.1-cp38-abi3-macosx_10_15_x86_64.whl.

File metadata

File hashes

Hashes for pylance-0.9.1-cp38-abi3-macosx_10_15_x86_64.whl
Algorithm Hash digest
SHA256 a2bead3f0183da6637c724aa44f5911c6a59c910aabd782f5f7a07e5bf4e7c4b
MD5 810f14f729d04fb85ae2825fefb4c635
BLAKE2b-256 a528b70d95c3ef255851450ffde4f92097c50d3d411587e67a5c3aa38d4ab9e9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page