Skip to main content

PyMongo data modeling library

Project description

pymongo-document-modeling

Create data model backed with pymongo called: Document which have ability of polymorphism, and inheritance.

Feature

This document modeling library designed with OOP as a goal. Therefore it can associate field, and inherit it to its subclasses.

Installation

Begin with installation

> pip install pymongo-document-modeling

Configuration

Once you have installed pymongo-document-modeling module. Now you can start configure your pymongo. To state the configuration file, first prepare your config.

Here is a dirty example of configuration file.

[default]
connection_string = mongodb://localhost:27017/
database_name = test_beds
[test_data_pool]
connection_string = mongodb://localhost:27017/
database_name = test_data_pool

For more advance cases. You can actually specify many connection sections as you want (But default section is required).

Now let the system know where your configuration file is. To do this, call conf.update_config() before your declare your first class.

from pymongo_document import conf

# example a - specify the file
conf.update_config('conf/my-config.ini')        # read config from os.path.getcwd() + 'conf/my-config.ini'
# example b - specify directory (default config file name will be assumed).
conf.update_config('conf/')                     # read config from os.path.getcwd() + 'conf/pymongo-connectors.ini'

Lastly, within your model, you can reference this connector name. If omitted default will be used. (See first example in Quick start section’s Meta class).

Note If conf.update_config() never get invoked, this default configuration will be assumed.

[default]
connection_string = mongodb://localhost:27017/
database_name = default_database

Quick Start

Learn by example is simplest, and fastest. Here are some quick and dirty simple class examples.

from pymongo_document import documents as doc       # Import library module as "doc"

class SimpleDocument(doc.Doc):
    int_val = doc.FieldNumeric()
    str_val = doc.FieldString(default="default_value_of_string")

    class Meta:
        collection_name = "simple_document"         # Special class to annotate the document name to be saved.
        connection_name = "test_data_pool"          # Explicitly state connection_name, (If omitted, 'default' will be used)

Load and Save is as simple as Django’s Model.

d = SimpleDocument()
d.int_val = 500
d.save() # document is saved to your mongodb

loaded = SimpleDocument(d.object_id)
print d.int_val         # 500
print d.str_Val         # default_value_of_string
print d.object_id       # auto generated bson.ObjectId

For more complex classes, you can inherit from existing class, override existing fields.

class ABitComplexDocument(SimpleDocument):          # Extend existing model
    int_val_2 = doc.FieldNumeric(none=False)        # Add new field
    str_val = doc.FieldString(default="default_value_changed")      # Override existing model's field

    class Meta:
        collection_name = ":complex_1"  # use ':' to annotate the system to let this data model shared parent's collection

Mongo doesn’t have join, but we could establish connection between collection. We facilitate this by nesting them in a list of documents.

class HolderOfSimpleDocuments(doc.Doc):
    list_of_docs = doc.FieldList(doc.FieldDoc(SimpleDocument))

    class Meta:
        collection_name = "document_holders"

There are many more type of example, please see the complete list of documentation below.

References

Document Object

Document is designed with django model in mind. With help of special Meta class, we can beautifully annotate the document with indices, connection_name, collection_name and more.

To create a new document, you can simply start by extending Doc class.

from pymongo_document import documents as doc

class MySimpleDoc(doc.Doc):
    # Define fields here
    name = doc.FieldString(max_length=30, none=False)

    class Meta:
        collection_name = 'my_simple_doc'

With this code, MySimpleDoc will be created when this module is imported. This MySimpleDoc will have exactly 2 fields (not 1).

  1. Field name is created as a string field, cannot be None, and text length must not exceeds 30.

  2. Field object_id is also (automatically) created by inherit it from doc.Doc class. You can explicitly override this field, by redeclare the field with exact same name. The type can be totally different.

o = MySimpleDoc()           # Create a new MySimpleDoc instance
o.save()                    # Error thrown, 'name' is required.
o.name = 1                  # Error thrown, in correct type, 'basestring' is required.
o.name = 'peatiscoding'     # Set name
o.save()                    # Successfully saved to collection 'my_simple_doc'

Document.manager

All documents class will be equipped with manager object (pymongo_document.Docs class). manager is just like objects in Django’s Model’s manager. Allows user to find , update, or delete documents.

Find API

To make things easy, I’ve decided to use pymongo existing find api. For complete doc see find() document. pymongo collection’s find() method normally return dict as output. Instead of returning simple dict, the Document instance will be returned.

o = MySimpleDoc()
o.save()

cursor = MySimpleDoc.manager.find().sort('_id') # use Cursor's method as pymongo did.
for a in cursor:
    print "%s" % a.object_id                    # cursor returned objects is now already inflated as Document.

FieldSpecAware Object

Doc class is inherited from FieldSpecAware class. FieldSpecAware taken care of Field detection, and overseer them in translating from python object, to document (saving format for mongodb).

Normally you will use FieldSpecAware with FieldNested. So that you can define a dict within another document. See @FieldNested for more information.

Fields

Every field are customisable via the use of **kwargs of which each options will be provided in the sample per each individual fields below.

In addition, every field is compatible with assigning its own validator as well. To add your own validators. Create a field, then specific validators keyword argument in field creation.

Validator can be defined in 2 styles.

  • Callable - if you supplied validators as a simple callable, then you are responsible to raise a proper FieldValidationError manually.

  • (Callable, basestring) - if callable returns True, basestring will be raised as an Error message.

Here is an example.

 def in_the_past_or_throw(value, name):
        if isinstance(value, datetime) and value < datetime.now():
            return
        raise err.FieldValidationError(value, 'Value must be past', name)

class TestMeDocument(doc.Doc):
    positive_number = doc.FieldNumeric(validators=[(lambda v: v < 0, 'positive number is required')])
    even_number = doc.FieldNumeric(validators=[(lambda v: v % 2 == 1, 'even number only')])
    negative_odd_number = doc.FieldNumeric(validators=[
        (lambda v: v > 0, 'negative number is required'),
        (lambda v: v % 2 == 0, 'odd number is required')
    ])
    custom_value = doc.FieldDateTime(validators=[in_the_past_or_throw])  # Callable style

By assigning incorrect value FieldValidationError will be raised.

FieldObjectId

Use this field to store any ObjectId. But If you would like to store another document reference. Try FieldDoc or FieldAnyDoc instead.

Usage

class SimpleDocument(doc.Doc):
    oid = doc.FieldObjectId()

ObjectId field accepts bson.ObjectId instance, or bson.ObjectId compatible string (24 alphanumeric string).

Note that normally if you inherit from Doc you will automatically get object_id field for free.

FieldNumeric

Use this field to store any numeric numbers.

Usage

class SimpleDocument(doc.Doc):
    VALUE_A = 1
    VALUE_B = 2
    VALUE_C = 3
    VALUES = (
        (VALUE_A, '1st value'),
        (VALUE_B, '2nd value'),
        (VALUE_C, '3rd value')
    )

    amount1 = doc.FieldNumeric(default=3, max_value=50, min_value=10)
    amount2 = doc.FieldNumeric(max_value=40, none=False)
    amount3 = doc.FieldNumeric()        # no max, no min, can be None, no default
    amount4 = doc.FieldNumeric(choices=VALUES)
  • max_value - (numeric) set upper bound of field. Default is None (no upper bound).

  • min_value - (numeric) set lower bound of field. Default is None (no lower bound).

  • default - (numeric) set a default value for this field. Default is None.

  • none - (boolean) set to False to prohibit None value for this field. Default is True.

  • choices - (tuple, list) set possible values for the field. Default is None.

FieldString

Use this file to store any basestring instance.

Usage

class SimpleDocument(doc.Doc):
    VALUE_A = 'A'
    VALUE_B = 'B'
    VALUE_C = 'C'
    VAULES = (
        (VALUE_A, 'A description'),
        (VALUE_B, 'B description'),
        (VALUE_C, 'C description'),
    )
    str_value = doc.FieldNumeric(default="default_string", max_length=10)
    fixed_length_str_value = doc.FieldString(fixed_length=2)
    fixed_choices_str_value = doc.FieldString(choices=VALUES, default=VALUE_A)
    fixed_pattern_str_value = doc.FieldString(pattern=r'[a-z]{2}\d{5}3-[A-Z]{2}')
  • pattern - (SRE_Pattern|regex pattern string) set a required pattern for input string. Default is None.

  • max_length - (numeric) set maximum character count. Default is None (no upper bound).

  • fix_length - (numeric) set constant character count. Default is None (no upper bound).

  • default - (numeric) set a default value for this field. Default is None.

  • none - (boolean) set to False to prohibit None value for this field. Default is True.

  • choices - (tuple, list) set possible values for the field. Default is None.

FieldDict

Use this field to store complete any python dict without schema.

Usage

class SimpleDocument(doc.Doc):
    data = doc.FieldDict()
  • default - (dict) set a default value for this field. Default is None.

  • none - (boolean) set to False to prohibit None value for this field. Default is True.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymongo-document-modeling-0.9.1.dev3.tar.gz (18.0 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page