Skip to main content

MILP extension for pymscada

Project description

pymscada-milp

Base MILP operation

Provides a python module to frame and solve MILP problems.

from pymscada_milp import LpModel

# See https://www.homepages.ed.ac.uk/jwp/newMSOcopy/section5/milp.html
#
# max: 20 x1 + 6 x2 + 8 x3;
# 0.8 x1 + 0.2 x2 + 0.3 x3 <=20;
# 0.4 x1 + 0.3 x2 <= 10;
# 0.2 x1 + 0.1 x3 <= 5;
# int x1, x2, x3;
#
# and crucially, on the earlier page and not copied :(
# x3<=20;

m = LpModel()
m.add_row(-20, 'x1', -6, 'x2', -8, 'x3', 'N')  # Negate as default minimizes
m.add_row(0.8, 'x1', 0.2, 'x2', 0.3, 'x3', 'L', 20)
m.add_row(0.4, 'x1', 0.3, 'x2', 'L', 10)
m.add_row(0.2, 'x1', 0.1, 'x3', 'L', 5)
m.add_limit('x1', 'LI', 0)
m.add_limit('x2', 'LI', 0)
m.add_limit('x3', 'UI', 20)
m.write_mps()
m.solve_mps()
print([f'{x} {m.results[x]}' for x in ['x1', 'x2', 'x3']])
m.remove_result()

Hydraulic Model

The LP model (above) was intended to provide a way to model generators, gates and reservoirs with a procedural representation. i.e.

from pymscada_milp import HydraulicModel, TimeSeries, State

inflow = TimeSeries(9.0)  # Provides inflow present value and history
outflow = TimeSeries(1.0)
tank = TimeSeries(0.5)
model = {
    'name': 'test',
    'actual_time': 1522494300,
    'time_step': 600,
    'duration': 1200,
    'tempdir': 'tmp',
    'model': {
        'Inflow': {
            'type': 'valve',
            'time_series': inflow,
            'dstnode': 'Tank',
            'state': State.FIXED  # Use State.FREE to solve optimally
        },
        'Tank': {
            'type': 'storage',
            'time_series': tank,
            'LV': [
                [0.00, 0],
                [1.00, 1000000]
            ],
            'costs': [
                [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
                [
                    [10000, 10000],  # expensive low cost
                    [50, 10],  # soft low cost
                    [1, 0],  # slightly favour filling
                    [0, 50],  # soft high cost
                    [5000, 5000]  # expensive high cost
                ]
            ]
        },
        'Outflow': {
            'type': 'valve',
            'time_series': outflow,
            'srcnode': 'Tank',
            'state': State.FIXED
        }
    }
}
m = HydraulicModel(model)
m.solve_lp()
print(inflow.values())  # The solver adds inflow predictions / setpoints.
print(tank.values())
print(outflow.values())
m.remove_result()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymscada_milp-0.0.3.tar.gz (42.9 kB view details)

Uploaded Source

Built Distribution

pymscada_milp-0.0.3-py3-none-any.whl (34.0 kB view details)

Uploaded Python 3

File details

Details for the file pymscada_milp-0.0.3.tar.gz.

File metadata

  • Download URL: pymscada_milp-0.0.3.tar.gz
  • Upload date:
  • Size: 42.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.16.1 CPython/3.11.2 Linux/6.1.0-22-amd64

File hashes

Hashes for pymscada_milp-0.0.3.tar.gz
Algorithm Hash digest
SHA256 5a3b9b910fd3fc91615c0019c9c1c2b61d211116fb453abe3aaab975cd2026a0
MD5 13d7086fd04b45b5a44fc1eeee9e3069
BLAKE2b-256 07385e28187b6f8b973e138d3437d39ef7f135aaa9f2bff7119f93284249be50

See more details on using hashes here.

File details

Details for the file pymscada_milp-0.0.3-py3-none-any.whl.

File metadata

  • Download URL: pymscada_milp-0.0.3-py3-none-any.whl
  • Upload date:
  • Size: 34.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: pdm/2.16.1 CPython/3.11.2 Linux/6.1.0-22-amd64

File hashes

Hashes for pymscada_milp-0.0.3-py3-none-any.whl
Algorithm Hash digest
SHA256 e58589b1f188acda600cfce8fc4beda5fb171cc9af5714b6778eb15d6ed0e82b
MD5 0b3e762ff6a8102dee0bad1cefb81132
BLAKE2b-256 78aec662d1fa27e4a5c2843c72018f1f128ec760015f0196636f29bd6140f11b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page