Skip to main content

No project description provided

Project description

pymutantic

User-friendly tool for combining pycrdt for efficient concurrent content editing and pydantic for type safety and a pleasant developer experience.

Overview

  • pymutantic.MutantModel - A type safe pycrdt.Doc ⟷ pydantic pydantic.BaseModel mapping with granular editing.
  • pymutantic.JsonPathMutator - Make edits using json path.
  • pymutantic.ModelVersionRegistry - Store a chain of versions for making granular schema migration edits.

Why do I want this?

The idea behind pymutantic is to provide views over the CRDT in the form of a pydantic model that you specify. There are two types of views:

  • Read only snapshot: Inspect the state of the underlying CRDT with a frozen version of the pydantic model you specify. This model is read only, any changes are not reflected back to the CRDT (TODO: find a way to make this actually mutable)
  • Mutable proxy: Make granular mutations to the data using a typed and mutable view over the underlying CRDT. Operations on this view are automatically synced with the underlying CRDT.

Installation

pip install pymutantic
## Usage

### `MutantModel`

Given a pydantic model...

```python
from pydantic import BaseModel, Field
from typing import List

class Author(BaseModel):
    id: str
    name: str

class Comment(BaseModel):
    id: str
    author: Author
    content: str

class Post(BaseModel):
    id: str
    title: str
    content: str
    author: Author
    comments: List[Comment] = Field(default_factory=list)

class BlogPageConfig(BaseModel):
    collection: str
    posts: List[Post] = Field(default_factory=list)
```

#### Create pycrdt documents from instances of that model using the `state` constructor parameter:

```python
from pymutantic import MutantModel

# Define the initial state
initial_state = BlogPageConfig(
    collection="tech",
    posts=[
        Post(
            id="post1",
            title="First Post",
            content="This is the first post.",
            author=Author(id="author1", name="Author One"),
            comments=[],
        )
    ]
)

# Create a CRDT document with the initial state
doc = MutantModel[BlogPageConfig](state=initial_state)
```

#### Get a snapshot (in the form of an instance of the pydantic model you specified) using the `state` property:

```python
print(doc.snapshot)
```

```text
BlogPageConfig(
    collection='tech',
    posts=[
        Post(
            id='post1',
            title='First Post',
            content='This is the first post.',
            author=Author(id='author1', name='Author One'),
            comments=[]
        )
    ]
)
```

NOTE: This is simply a snaphot any edits which are made to this copy are not reflected to the underlying CRDT.

#### Get a mutable view over the CRDT (in the form of an instance of the pydantic model you specified) and make granular edits using the `mutate` function

```python
# Mutate the document
with doc.mutate() as state:
    state.posts[0].comments.append(Comment(
        id="comment1",
        author=Author(id="author2", name="Author Two"),
        content="Nice post!",
    ))
    state.posts[0].title = "First Post (Edited)"

print(doc.snapshot)
```

```
BlogPageConfig(
    collection='tech',
    posts=[
        Post(
            id='post1',
            title='First Post',
            content='This is the first post.',
            author=Author(id='author1', name='Author One'),
            comments=[
                Comment(
                    id="comment1",
                    author=Author(id="author2", name="Author Two"),
                    content="Nice post!",
                )
            ]
        )
    ]
)
```

NOTE: These edits are applied in bulk using a `Doc.transaction`

#### Type check your code to prevent errors:

```python
empty_state = BlogPageConfig.model_validate({"collection": "empty", "posts": []})
doc = MutantModel[BlogPageConfig](state=empty_state)
doc.snapshot.psts
```

```bash
$ mypy . --check-untyped-defs --allow-redefinition
```

![error](error.png)

#### Use your IDE for a comfortable developer experience:

![autocomplete](autocomplete.png)

#### Get a binary update blob from the CRDT, for example for sending over the wire to other peers:

```python
binary_update_blob: bytes = doc.update
```

#### Instantiate documents from a binary update blob (or multiple using the `updates` parameter which accepts a list of update blobs):

```python
doc = MutantModel[BlogPageConfig](update=received_binary_update_blob)    
```

#### Apply more binary updates, by setting the `update` property:

```python
doc.apply_updates(another_received_binary_update_blob)
```

### `JsonPathMutator`

There is also a JsonPathMutator class which can be used to make edits to the document using json path:

```python
# Mutate the document
from pymutantic import JsonPathMutator

with doc.mutate() as state:
    mutator = JsonPathMutator(state=state)
    mutator.set("$.posts[0].title", "Updated First Post")

print(doc.snapshot)
```

### `ModelVersionRegistry` (experimental)

It is also possible to apply granular schema migration edits using the `ModelVersionRegistry` class. By storing multiple versions of a Model and implementing `up` and `down` functions (which in fact are making granular migrations) schema migrations can also be synchronized with other concurrent edits:

```python
class ModelV1(BaseModel):
    schema_version: int = 1
    field: str
    some_field: str

    @classmethod
    def up(cls, state: typing.Any, new_state: typing.Any):
        raise NotImplementedError("can't migrate from null version")

    @classmethod
    def down(cls, state: typing.Any, new_state: typing.Any):
        raise NotImplementedError("can't migrate to null version")


class ModelV2(BaseModel):
    schema_version: int = 2
    some_field: str

    @classmethod
    def up(cls, state: ModelV1, new_state: "ModelV2"):
        del state.field

    @classmethod
    def down(cls, state: "ModelV2", new_state: ModelV1):
        new_state.field = "default"


from pymutantic import ModelVersionRegistry

migrate = ModelVersionRegistry([ModelV1, ModelV2])

doc = MutantModel[ModelV1](state=ModelV1(field="hello", some_field="world"))

# Make an independent edit
edit = MutantModel[ModelV1](update=doc.update)
with edit.mutate() as state:
    state.some_field = "earth"

# Migrate and apply the independent edit
doc = migrate(doc, to=ModelV2)
doc.update.apply_updates(edit.update)
```

```text
ModelV2(schema_version=2, some_field='earth')
```

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pymutantic-0.10.0.tar.gz (11.9 kB view details)

Uploaded Source

Built Distribution

pymutantic-0.10.0-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file pymutantic-0.10.0.tar.gz.

File metadata

  • Download URL: pymutantic-0.10.0.tar.gz
  • Upload date:
  • Size: 11.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.0rc1 Linux/6.5.0-44-generic

File hashes

Hashes for pymutantic-0.10.0.tar.gz
Algorithm Hash digest
SHA256 79d579dc73b7c6584e619e21febc1aebef97d1c7a7b06881b41887f21992823a
MD5 8547cf58c9f173d77f88dd62fcd0b01f
BLAKE2b-256 e8c3844ebf7bf74776e459775dcdd2cf355cfd643da8640ab62c96993c739e24

See more details on using hashes here.

File details

Details for the file pymutantic-0.10.0-py3-none-any.whl.

File metadata

  • Download URL: pymutantic-0.10.0-py3-none-any.whl
  • Upload date:
  • Size: 13.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.8.3 CPython/3.11.0rc1 Linux/6.5.0-44-generic

File hashes

Hashes for pymutantic-0.10.0-py3-none-any.whl
Algorithm Hash digest
SHA256 928d12abaee59b853b82294df2121de6e1f3cbbec6abebca4a5edca569d8ae48
MD5 233259dd2fdff278c469d73d8d14a702
BLAKE2b-256 134aee5e0faa22ae5c932674acbae71b5ee9c4fc23a113bf014e8de6f38cfa22

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page