Neuroscout API wrapper
Project description
pyNS 🌲
The Neuroscout API wrapper for Python
Overview
pyNS is a python package to easily interact with the Neuroscout API.
For more API documentation, check out the Swagger API Docs: http://neuroscout.org/swagger-ui/
Installation
pyNS is supported in Python 3.4+
Use pip
to install it:
pip install pyns
Quickstart
For a tutorial on how to build an analysis, see this Jupyter Notebook: https://github.com/neuroscout/pyNS/blob/master/examples/Tutorial.ipynb
We are assuming you already have valid Neuroscout API credentials (and if you dont, sign up at: alpha.neuroscout.org
)
First, instantiate a Neuroscout API Client object:
from pyns import Neuroscout
neuroscout = Neuroscout(username='USERNAME', password='PASSWORD')
With the neuroscout
instance, you can interact with the API. All of the major routes are linked to the main neuroscout
object,
and return requests
Response
objects.
For example we can retrieve our user profile:
>>> neuroscout.user.get()
{'email': 'user@example.com',
'analyses': [ {'description': 'Does the brain care about language?',
'hash_id': 'RZd',
'modified_at': '2018-08-09T23:3',
'name': 'My new analysis',
'status': 'PASSED'}]]}
Or query various endpoints, such as datasets
:
>>> neuroscout.datasets.get()
[{'description': {'Acknowledgements': '',
'Authors': ['Tomoyasu Horikawa', 'Yukiyasu Kamitani'],
'DatasetDOI': '',
'Funding': '',
'HowToAcknowledge': '',
'License': '',
'Name': 'Generic Object Decoding (fMRI on ImageNet)',
'ReferencesAndLinks': ['Horikawa & Kamitani (2017) Generic decoding of seen and imagined objects using hierarchical visual features. Nature Communications volume 8:15037. doi:10.1038/ncomms15037']},
'id': 1,
'name': 'generic_object_decoding',
...
'tasks': [{'id': 8, 'name': 'life'}]}]
For example, we could use this to get the first predictor associated with a dataset:
>>> first = neuroscout.predictors.get(dataset_id=5)[0]
{'description': 'Bounding polygon around face. y coordinate for vertex 1',
'extracted_feature': {'created_at': '2018-04-12 00:44:14.868349',
'description': 'Bounding polygon around face. y coordinate for vertex 1',
'extractor_name': 'GoogleVisionAPIFaceExtractor',
'id': 102,
'modality': None},
'id': 197,
'name': 'boundingPoly_vertex1_y',
'source': 'extracted'}
And get the predictor-events associated with that predictor:
>>> neuroscout.predictor_events.get(predictor_id=first['id'])[0:2]
[{'duration': 9.0,
'id': '1050781',
'onset': 114.0,
'predictor_id': 197,
'run_id': 2,
'value': '13'},
{'duration': 9.0,
'id': '1050782',
'onset': 114.0,
'predictor_id': 197,
'run_id': 26,
'value': '13'}]
Testing
We use pytest for testing, and betamax to record HTTP requests used in test into cassettes.
To re-run tests locally set theUSER_TEST_EMAIL
and USER_TEST_PWD
environment variables with valid API credentials.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.