Skip to main content

ODPS Python SDK and data analysis framework

Project description

PyPI version Docs License Implementation

Elegent way to access ODPS API. Documentation

Installation

The quick way:

pip install pyodps[full]

If you don’t need to use Jupyter, just type

pip install pyodps

The dependencies will be installed automatically.

Or from source code (not recommended for production use):

$ virtualenv pyodps_env
$ source pyodps_env/bin/activate
$ pip install git+https://github.com/aliyun/aliyun-odps-python-sdk.git

Dependencies

  • Python (>=2.7), including Python 3+, pypy, Python 3.7 recommended

  • setuptools (>=3.0)

Run Tests

  • install pytest

  • copy conf/test.conf.template to odps/tests/test.conf, and fill it with your account

  • run pytest odps

Usage

>>> import os
>>> from odps import ODPS
>>> # Make sure environment variable ALIBABA_CLOUD_ACCESS_KEY_ID already set to Access Key ID of user
>>> # while environment variable ALIBABA_CLOUD_ACCESS_KEY_SECRET set to Access Key Secret of user.
>>> # Not recommended to hardcode Access Key ID or Access Key Secret in your code.
>>> o = ODPS(
>>>     os.getenv('ALIBABA_CLOUD_ACCESS_KEY_ID'),
>>>     os.getenv('ALIBABA_CLOUD_ACCESS_KEY_SECRET'),
>>>     project='**your-project**',
>>>     endpoint='**your-endpoint**',
>>> )
>>> dual = o.get_table('dual')
>>> dual.name
'dual'
>>> dual.table_schema
odps.Schema {
  c_int_a                 bigint
  c_int_b                 bigint
  c_double_a              double
  c_double_b              double
  c_string_a              string
  c_string_b              string
  c_bool_a                boolean
  c_bool_b                boolean
  c_datetime_a            datetime
  c_datetime_b            datetime
}
>>> dual.creation_time
datetime.datetime(2014, 6, 6, 13, 28, 24)
>>> dual.is_virtual_view
False
>>> dual.size
448
>>> dual.table_schema.columns
[<column c_int_a, type bigint>,
 <column c_int_b, type bigint>,
 <column c_double_a, type double>,
 <column c_double_b, type double>,
 <column c_string_a, type string>,
 <column c_string_b, type string>,
 <column c_bool_a, type boolean>,
 <column c_bool_b, type boolean>,
 <column c_datetime_a, type datetime>,
 <column c_datetime_b, type datetime>]

DataFrame API

>>> from odps.df import DataFrame
>>> df = DataFrame(o.get_table('pyodps_iris'))
>>> df.dtypes
odps.Schema {
  sepallength           float64
  sepalwidth            float64
  petallength           float64
  petalwidth            float64
  name                  string
}
>>> df.head(5)
|==========================================|   1 /  1  (100.00%)         0s
   sepallength  sepalwidth  petallength  petalwidth         name
0          5.1         3.5          1.4         0.2  Iris-setosa
1          4.9         3.0          1.4         0.2  Iris-setosa
2          4.7         3.2          1.3         0.2  Iris-setosa
3          4.6         3.1          1.5         0.2  Iris-setosa
4          5.0         3.6          1.4         0.2  Iris-setosa
>>> df[df.sepalwidth > 3]['name', 'sepalwidth'].head(5)
|==========================================|   1 /  1  (100.00%)        12s
          name  sepalwidth
0  Iris-setosa         3.5
1  Iris-setosa         3.2
2  Iris-setosa         3.1
3  Iris-setosa         3.6
4  Iris-setosa         3.9

Command-line and IPython enhancement

In [1]: %load_ext odps

In [2]: %enter
Out[2]: <odps.inter.Room at 0x10fe0e450>

In [3]: %sql select * from pyodps_iris limit 5
|==========================================|   1 /  1  (100.00%)         2s
Out[3]:
   sepallength  sepalwidth  petallength  petalwidth         name
0          5.1         3.5          1.4         0.2  Iris-setosa
1          4.9         3.0          1.4         0.2  Iris-setosa
2          4.7         3.2          1.3         0.2  Iris-setosa
3          4.6         3.1          1.5         0.2  Iris-setosa
4          5.0         3.6          1.4         0.2  Iris-setosa

Python UDF Debugging Tool

#file: plus.py
from odps.udf import annotate

@annotate('bigint,bigint->bigint')
class Plus(object):
    def evaluate(self, a, b):
        return a + b
$ cat plus.input
1,1
3,2
$ pyou plus.Plus < plus.input
2
5

Contributing

For a development install, clone the repository and then install from source:

git clone https://github.com/aliyun/aliyun-odps-python-sdk.git
cd pyodps
pip install -r requirements.txt -e .

If you need to modify the frontend code, you need to install nodejs/npm. To build and install your frontend code, use

python setup.py build_js
python setup.py install_js

License

Licensed under the Apache License 2.0

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyodps-0.12.0.tar.gz (1.1 MB view details)

Uploaded Source

Built Distributions

pyodps-0.12.0-cp312-cp312-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.12 Windows x86-64

pyodps-0.12.0-cp312-cp312-win32.whl (1.7 MB view details)

Uploaded CPython 3.12 Windows x86

pyodps-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyodps-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

pyodps-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

pyodps-0.12.0-cp312-cp312-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.12 macOS 10.9+ universal2 (ARM64, x86-64)

pyodps-0.12.0-cp311-cp311-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86-64

pyodps-0.12.0-cp311-cp311-win32.whl (1.8 MB view details)

Uploaded CPython 3.11 Windows x86

pyodps-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyodps-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pyodps-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyodps-0.12.0-cp311-cp311-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

pyodps-0.12.0-cp310-cp310-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86-64

pyodps-0.12.0-cp310-cp310-win32.whl (1.8 MB view details)

Uploaded CPython 3.10 Windows x86

pyodps-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyodps-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pyodps-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyodps-0.12.0-cp310-cp310-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

pyodps-0.12.0-cp39-cp39-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86-64

pyodps-0.12.0-cp39-cp39-win32.whl (1.8 MB view details)

Uploaded CPython 3.9 Windows x86

pyodps-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyodps-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (4.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pyodps-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyodps-0.12.0-cp39-cp39-macosx_10_9_universal2.whl (2.3 MB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

pyodps-0.12.0-cp38-cp38-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.8 Windows x86-64

pyodps-0.12.0-cp38-cp38-win32.whl (1.8 MB view details)

Uploaded CPython 3.8 Windows x86

pyodps-0.12.0-cp38-cp38-manylinux2014_aarch64.whl (4.2 MB view details)

Uploaded CPython 3.8

pyodps-0.12.0-cp38-cp38-manylinux1_x86_64.whl (3.5 MB view details)

Uploaded CPython 3.8

pyodps-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

pyodps-0.12.0-cp37-cp37m-win_amd64.whl (1.9 MB view details)

Uploaded CPython 3.7m Windows x86-64

pyodps-0.12.0-cp37-cp37m-win32.whl (1.8 MB view details)

Uploaded CPython 3.7m Windows x86

pyodps-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl (3.9 MB view details)

Uploaded CPython 3.7m

pyodps-0.12.0-cp37-cp37m-manylinux1_x86_64.whl (3.4 MB view details)

Uploaded CPython 3.7m

pyodps-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

pyodps-0.12.0-cp36-cp36m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86-64

pyodps-0.12.0-cp36-cp36m-win32.whl (1.8 MB view details)

Uploaded CPython 3.6m Windows x86

pyodps-0.12.0-cp36-cp36m-manylinux1_x86_64.whl (3.3 MB view details)

Uploaded CPython 3.6m

pyodps-0.12.0-cp36-cp36m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

pyodps-0.12.0-cp35-cp35m-win_amd64.whl (1.8 MB view details)

Uploaded CPython 3.5m Windows x86-64

pyodps-0.12.0-cp35-cp35m-win32.whl (1.8 MB view details)

Uploaded CPython 3.5m Windows x86

pyodps-0.12.0-cp35-cp35m-manylinux1_x86_64.whl (3.2 MB view details)

Uploaded CPython 3.5m

pyodps-0.12.0-cp27-cp27mu-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 2.7mu

pyodps-0.12.0-cp27-cp27m-manylinux1_x86_64.whl (3.0 MB view details)

Uploaded CPython 2.7m

pyodps-0.12.0-cp27-cp27m-macosx_10_9_x86_64.whl (1.8 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file pyodps-0.12.0.tar.gz.

File metadata

  • Download URL: pyodps-0.12.0.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.10.12

File hashes

Hashes for pyodps-0.12.0.tar.gz
Algorithm Hash digest
SHA256 ed946427f1fd5119bfc4e78e1f116c7d0f54fce86041e4fbd25b2c29aa8cff94
MD5 96a05398ffc815db1a9e076fd9d1eebb
BLAKE2b-256 99fa19740776c4a1dfdc423bdd537b32a952e726bc3c2c70d88de85a2e841256

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 ee11256f34366ac8d8afb2e97c2cb8fbc50ea2ff35250a5d0e408a32cd94faa3
MD5 4aeeaad78819831cacfb9efa7da0f6f8
BLAKE2b-256 ef2c9590bb124b3e450b37883ca6e8d1eb0be5468d7084ac1d74add8fcf12752

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp312-cp312-win32.whl
  • Upload date:
  • Size: 1.7 MB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bdc9c3c46b8ed22e605e94fa4b5dc61cebada040f754168c1758b402edd52493
MD5 f562048f79bf1fafb2a5cb61d6383cb9
BLAKE2b-256 2b372e430346bb27d4b451346e24034aa5f913325644e3560d8802c0149447c0

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0968e5f98b52b85578acca4bbd9596ff026fa79c2e13193ad041e79db8059b1f
MD5 8aae550cf20095010695b1cd8b8c1864
BLAKE2b-256 d366a04d698722794b78830847fdae7f60dffbebba23473c37a790879fb1a560

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 199abd629936a94d3ea4b9d05837f8bf232d5d0dd609bfad8c787372883cf5be
MD5 70200723539167884cd7de51bc310e8a
BLAKE2b-256 74382384a8821b8fb206b3e627590f62da46dd6063fbbf1022b09365ef5070a7

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 75736aab7d54eca060a45dfd748f43b9d54c2af618d463656092cb138e949592
MD5 15c8fd1b7b87204080b720c6bb54a8ea
BLAKE2b-256 8209d653efff0f82c09d18987d5b506465b9759d83caccc54abf6fed123eb152

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp312-cp312-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp312-cp312-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 733c7b84844c3760c6435ac6f548ea171544ea0d5e8635b2b9d983f675735ba5
MD5 8afcec84000c7251d9e4dc0d07c8ec3c
BLAKE2b-256 dee563859d8e924ba48ad7f731d6a45fb669bc2e9837bbdd19960a56a7591881

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 70949353efd5a7eb17dcfbd8953bbe8f10186007394ba9f272ab72b4cbd89588
MD5 9e74a56f3e3d97e6406a0aa6b87a296b
BLAKE2b-256 099d3bbaba92ab54e020493f3608c6e810a7ede89529ea29268005796f936dd8

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp311-cp311-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 cbf7b78ffdb0a4bab35595c1d45265df08dc09b22bf3ea21aa1e04954a636942
MD5 2e858a4d6bbbe74c5e134c1a2bb27a90
BLAKE2b-256 ab0d8b92d1d8be02c3827a2f56896884b738d344c5c7d27deca5f0fc55a6d9e0

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cbfb7ce465e183941d2ff6ff0ea7217dd6ab882ddeb82654e86c2077f94db444
MD5 b6e28a93092e480ac2fdc3ec9af66fd8
BLAKE2b-256 2123744a76f461a3ebf4a746b5154e3be0503ebbcfab6116df4b6cef756c60a7

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 18b8490a2f4356cce339fe6640ef3324e9f3c3581a032cd06aa6d853499bfde7
MD5 51bff12585015b84f9680b24f871db80
BLAKE2b-256 742802252caab563c7b5dfb20e1fc656fbf00fbd39ec571200bbae94fee23c0d

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 51ba4f1428923e315f64445f1fc72e0e8b538f60c0ed07488b4e3c536e2635f0
MD5 92c6b8c0d0195caecfa5b40537159649
BLAKE2b-256 310a3424a93af7169a2ec8d0912a4b8b9e0d0780e9362970ae286fcde1be5982

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 e131c0d1eea8c7ddd1e40da5e10981d6e0780afba53d13bc75d3030683a6c33d
MD5 f6368363c0278c183c322ff0115f5dce
BLAKE2b-256 978f0f09314a115cc0a618d603ae7b2df999cc4283ef3d0dc622e31a8896ba58

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 130e9734eafee2e1ab15c94c40887bab73972c1b9436b351fac3f59e10817c31
MD5 421032ca6de7183b4babcfa120ae81fd
BLAKE2b-256 ddae1d33f7394fdf0dc375c849fbbe064096ab453801c52e22b20dc2c1aea270

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp310-cp310-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 15a3ffd2e87f2c2ff35323cb815c6bc7f4c6a8c1f0bcebee5799caec4413e1ce
MD5 317344628565239121d36ac52e4cf53b
BLAKE2b-256 4b3e90f80c70b576d1beaab8f10acb819d6b6c9689da12941e4a82597e95d4b4

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e507b03e5b07237b003031ea4570c8d10e92ec616937936cb6c4fe65da17ea39
MD5 a3b35e18ae88fb33c5c2c14cdb4093de
BLAKE2b-256 5b5ee1d90725e11e81ac92c6eaecebbe03c1351a5858bbde9711c2e0a5a7dda7

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 874d16d9172c828dfa635550d5dd1bb2da511c4093401c23bc74d61841e31502
MD5 6ddab52775122385e8bc5fd39592dd07
BLAKE2b-256 a263e6f389d138a0c2d3150323c28b99bda565f2e47900acdfb159a7926e6fb3

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4edd5986a095b05e4bc41cddb0f45a4aac2938edd283b08ab2c38bbe1134bf48
MD5 a05bd0d4173a6a73896e46f022d93ca8
BLAKE2b-256 c82e5bc36f115413d94ecfea14713d80aaa5aa66e4c9057fc1da6b98d8b2471e

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 4181a8692245ef92bbacd78ba999bc01608a9b38fc2bc48441526d09ba1697a8
MD5 8effca0355c204869d762438b4f975c1
BLAKE2b-256 e7cd76b23f6c465c37127570e972445880a49437fd295e7cbcbcf21f9aaa38bf

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 279ae1068ac84fa9a3fad656a6e9a19f52de34fc05274b7a602a60521e24da08
MD5 329fec041c22d1bd9072cac7a77199b7
BLAKE2b-256 bcfcf5a7acfec5032a650e2c18d953e0216bf40a8f2b6d0f19a4b7134ed2ade8

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp39-cp39-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0cb27f52da8a5d4e2a4f9dc45289a4723b38811e70c4c9c478ba1ab5ac07e34b
MD5 d826f06ee0e9669acf26a26a86222e30
BLAKE2b-256 79b86bbb2d7d1a073b8b0624aa0430ab01d3c5b5861e89298a7ce439c12efea1

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 36230879bd76409ef66550af77172d4334dfe9f86297cafe57a422687ad8da58
MD5 8865fc2b262575a2c3c842f16b1c8381
BLAKE2b-256 70fc5c37118a564daa23a90927585ecd23b3da4c55f9298489900042bd59b8a3

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8b8fd404d5a7a808674da1b413669d10c6650d0489842035064f1dab86c888bf
MD5 24e89063b3b40ff6797792318755091c
BLAKE2b-256 4899a4b1c486f54282ab59683d7826ae79bce9085f694d9861220640f6e3ed74

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ae4c0d5f6d9b3c1f23d6e21ffd180f5c3b854822c30384cfe31aa62dac429b8c
MD5 c7241df62c4095e3bf04beb351f8f8fd
BLAKE2b-256 e72abc40bd84ce27f7408e75606aa894b28e55d26d04a82141fbf1acb32d7370

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 d0fdf97ccef927bd30c502d1cd9f87aa9fa4d29901acce49a4019b9421e19381
MD5 5f56b7c3214c4943ebeb33956195c9c5
BLAKE2b-256 820c5da197b2ad0c97f76dbfaba5513f36417d3a31c90216f427e3527107d79c

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2e923cfcdecb01d4a75ae24549ba51d9db194be6f045885c4e79350df2e00c66
MD5 d6cbe618a2cd29d648e4bbbc4f14a3b8
BLAKE2b-256 b74194fca43130aa6dedca1f57737aaa4c59befde37133af968ffac14efbfc12

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp38-cp38-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp38-cp38-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 35fe81a4ca7ac6d2fd98c2f0d2348094673259789832ffc6d66e65594790f416
MD5 3a51a44260dab90d7981712aff31b3f8
BLAKE2b-256 3fbdbee34ed98f142d39762abedaad12cdb9b07e3e92d92afd50a32d75e0d3f0

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp38-cp38-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp38-cp38-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 f52b6b1ee374abd288e9e0b85eda0496519823259f59a355af96bade4b2426dc
MD5 fd8b063b8a6845d357142955c5a5c360
BLAKE2b-256 4fbd73db31175f4b54bc0e8e2b5e738fd9d75e76a0e92dd36e3148cd8cc8813e

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp38-cp38-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp38-cp38-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 778d6c321df9e1b4b56dc822eb3d838a1703002ff24fa6aa64cf4473ba774e93
MD5 8d3865602d18a19f9747813ac3625db4
BLAKE2b-256 70975fbbb8cf07c647ff3aa037fab06599b3f1b73743a8ff8dfc50d17a68f98f

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 73af34287dac7d46c3d50a0e37a3cd3626b57e7b3e0c4bf7d16c9ae02a7847f8
MD5 6f807fd86109f11958836fb5854f9896
BLAKE2b-256 025931075126ebccd1b4a2fa4ba4911ca20ba89746635b85d14a28cd515a5ed1

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.9 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 196f0baeb5d70d7ef33cc93ff530669a782dfe77a5b32a01c46461417ab216fc
MD5 5c4f32f001fbab4f5d9063c9d1b9f8db
BLAKE2b-256 a35ac764ff271ba6eb6ad2149e99e68bc2fe94bdbec691200da86171e9e3900a

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp37-cp37m-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 854bdab8122a903792b71075e3312cc20b61f272462b8d4f64b3359091ac7d5d
MD5 ef6f9597d6345273d623ba337e2c049c
BLAKE2b-256 f1da83690490bb79b8c65e3026291ff99880401697a42d99ef8926e9abfbdb5e

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp37-cp37m-manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ee5b933c0e27cc2dfe06dc686ceb04f41a161b09bc48cd2013e4f5a9056c82fb
MD5 ab07a33c786c8c461859b63c1b2acdec
BLAKE2b-256 8107af1cefd53f7fefb1162d48bfdf421a84f4bd02cd20403812dcf4429c8d09

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 24b737425f5c0d7b3d5cc088e521f23afd56380ed6e48fb357e77d3d13a5b66c
MD5 b2960daf63491f5a0709201f8adf903f
BLAKE2b-256 7fe85762f1cb32d1861df085e676aba18880c0d44bb0e45db74d04335b601480

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f5a1b14830402b75991ce1be67d6a73ee54f8b1ec860763282960e18d82e4d3
MD5 dc26b8481a2ac0eae6a2aac9bb3edb24
BLAKE2b-256 a397d979e544422f50aec241d553b2fc245cdec3cbd620479751d403721cfe74

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 dfbe9a46ce5fc6d92070651a9cd85c04f9f2fd4bf5bbf168042060d5bea35212
MD5 ceb81d338a2d93cb40eb412c3de9f8a2
BLAKE2b-256 5da2c2793e57360ffa0eb3bf3920ce5e66dd841bfe27a71ad8b3734dfa54e6b2

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp36-cp36m-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 2ec6765149d787adbb6d5b866fe981e0dbc4db1ec9e98557afb9a47fb9a880fe
MD5 2b5c73320ceb460b321e5c3c167c538d
BLAKE2b-256 1128e73027f41e9ebabb1f390120453f4369468e1d7dc65bd4e36b3a43e7003b

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c0f297b0a5c5d367b3d9b75d42c9dc3d2ef5afcb8a029ac12fd5b00bef663732
MD5 b51e8a1ef67365f58fb13c0698b9812b
BLAKE2b-256 de0106f56cae3af9b1f6f21fd380c66c9c7607ffb7f083d7123b73ffbad55aa9

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dcea27130464bd570d43459095a8ec83af5a2b63f8994e82fc80ed628694a795
MD5 3a3d9578cd6a9687c5d572aa047674ee
BLAKE2b-256 18d5ab2eaebf30af24365770a1b623fd26cc91227c6362df8da84da9f054e40e

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 83fc14e32fa5285f0909f1ef4c89ccc853fbd75f647d52db259c29c9b0aa9565
MD5 94e6b60fdb0f8988f96bb3b2fa9f686a
BLAKE2b-256 ce3b55b2951b6aaef28bf284fe630cb52a3685f9b41e0f8217fc712891449e76

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp35-cp35m-win32.whl.

File metadata

  • Download URL: pyodps-0.12.0-cp35-cp35m-win32.whl
  • Upload date:
  • Size: 1.8 MB
  • Tags: CPython 3.5m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.9.13

File hashes

Hashes for pyodps-0.12.0-cp35-cp35m-win32.whl
Algorithm Hash digest
SHA256 8a89aab42155660e0146b25f9942c48df48bb190e3d4daa31e72173e169132e5
MD5 197d24f3fbd27b9984f560b494cc2f45
BLAKE2b-256 ea2d558231af93362d4ebb5d03e927ad907460edd732bd79504950c7207fb77c

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 15271b9aad8cd1ffa17d6dd6f940954e9e7f8aae12f6e40923b1ca117699b70d
MD5 e5e661d16a25abf0a16c097d5445b931
BLAKE2b-256 ddc4348a58afe9dd488f575ac47fe314503b7a5f5292cd2d13260984d3dfc348

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 6b96ce696554d0d5383b12a7defb9eb3a58e629883754796a679cb4eea6bbde4
MD5 44c733b5e41c5d810423bfb84fd1d3a9
BLAKE2b-256 0486564677dc1e1b4f043c346c59356013819135ab65424cc8f79d5af9ee56f1

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp27-cp27m-manylinux1_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp27-cp27m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 026a6c0b2a3a060af25a65792d8f89c93634c61dd550eb0a19f83bd033f2c3f7
MD5 c07b52cfec3f6059945aa541d3637428
BLAKE2b-256 3c93ade160345bfefa2037e9be75f87e48e206c1090090859f1fce04ce860d1d

See more details on using hashes here.

File details

Details for the file pyodps-0.12.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyodps-0.12.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c8d787967c593934b0b903b7be746c594ee0bdd9c9247eb31bcda3d56bd549c0
MD5 bba258399ff98369875c9e1a791ce862
BLAKE2b-256 cea02978ed2015c0f63f68dd401124bbd97d6722bd1134c45ca73909a5927365

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page