pyonmttok
pyonmttok is the Python wrapper for OpenNMT/Tokenizer, a fast and customizable text tokenization library with BPE and SentencePiece support.
Installation:
pip install pyonmttok
Requirements:
- OS: Linux, macOS, Windows
- Python version: >= 3.6
- pip version: >= 19.0
Table of contents
- Tokenization
- Subword learning
- Vocabulary
- Token API
- Utilities
Tokenization
Example
>>> import pyonmtok
>>> tokenizer = pyonmttok.Tokenizer("aggressive", joiner_annotate=True)
>>> tokens = tokenizer("Hello World!")
>>> tokens
['Hello', 'World', '■!']
>>> tokenizer.detokenize(tokens)
'Hello World!'
Interface
Constructor
tokenizer = pyonmttok.Tokenizer(
mode: str,
*,
lang: Optional[str] = None,
bpe_model_path: Optional[str] = None,
bpe_dropout: float = 0,
vocabulary_path: Optional[str] = None,
vocabulary_threshold: int = 0,
sp_model_path: Optional[str] = None,
sp_nbest_size: int = 0,
sp_alpha: float = 0.1,
joiner: str = "■",
joiner_annotate: bool = False,
joiner_new: bool = False,
support_prior_joiners: bool = False,
spacer_annotate: bool = False,
spacer_new: bool = False,
case_feature: bool = False,
case_markup: bool = False,
soft_case_regions: bool = False,
no_substitution: bool = False,
with_separators: bool = False,
preserve_placeholders: bool = False,
preserve_segmented_tokens: bool = False,
segment_case: bool = False,
segment_numbers: bool = False,
segment_alphabet_change: bool = False,
segment_alphabet: Optional[List[str]] = None,
)
# SentencePiece-compatible tokenizer.
tokenizer = pyonmttok.SentencePieceTokenizer(
model_path: str,
vocabulary_path: Optional[str] = None,
vocabulary_threshold: int = 0,
nbest_size: int = 0,
alpha: float = 0.1,
)
# Copy constructor.
tokenizer = pyonmttok.Tokenizer(tokenizer: pyonmttok.Tokenizer)
# Return the tokenization options (excluding options related to subword).
tokenizer.options
See the documentation for a description of each tokenization option.
Tokenization
# Tokenize a text.
# When training=False, subword regularization such as BPE dropout is disabled.
tokenizer.__call__(text: str, training: bool = True) -> List[str]
# Tokenize a text and return optional features.
# When as_token_objects=True, the method returns Token objects (see below).
tokenizer.tokenize(
text: str,
as_token_objects: bool = False,
training: bool = True,
) -> Union[Tuple[List[str], Optional[List[List[str]]]], List[pyonmttok.Token]]
# Tokenize a batch of text.
tokenizer.tokenize_batch(
batch_text: List[str],
as_token_objects: bool = False,
training: bool = True,
) -> Union[Tuple[List[List[str]], List[Optional[List[List[str]]]]], List[List[pyonmttok.Token]]]
# Tokenize a file.
tokenizer.tokenize_file(
input_path: str,
output_path: str,
num_threads: int = 1,
verbose: bool = False,
training: bool = True,
tokens_delimiter: str = " ",
)
Detokenization
# The detokenize method converts a list of tokens back to a string.
tokenizer.detokenize(
tokens: List[str],
features: Optional[List[List[str]]] = None,
) -> str
tokenizer.detokenize(tokens: List[pyonmttok.Token]) -> str
# The detokenize_with_ranges method also returns a dictionary mapping a token
# index to a range in the detokenized text.
# Set merge_ranges=True to merge consecutive ranges, e.g. subwords of the same
# token in case of subword tokenization.
# Set unicode_ranges=True to return ranges over Unicode characters instead of bytes.
tokenizer.detokenize_with_ranges(
tokens: Union[List[str], List[pyonmttok.Token]],
merge_ranges: bool = False,
unicode_ranges: bool = False,
) -> Tuple[str, Dict[int, Tuple[int, int]]]
# Detokenize a file.
tokenizer.detokenize_file(
input_path: str,
output_path: str,
tokens_delimiter: str = " ",
)
Subword learning
Example
The Python wrapper supports BPE and SentencePiece subword learning through a common interface:
1. Create the subword learner with the tokenization you want to apply, e.g.:
# BPE is trained and applied on the tokenization output before joiner (or spacer) annotations.
tokenizer = pyonmttok.Tokenizer("aggressive", joiner_annotate=True, segment_numbers=True)
learner = pyonmttok.BPELearner(tokenizer=tokenizer, symbols=32000)
# SentencePiece can learn from raw sentences so a tokenizer in not required.
learner = pyonmttok.SentencePieceLearner(vocab_size=32000, character_coverage=0.98)
2. Feed some raw data:
# Feed detokenized sentences:
learner.ingest("Hello world!")
learner.ingest("How are you?")
# or detokenized text files:
learner.ingest_file("/data/train1.en")
learner.ingest_file("/data/train2.en")
3. Start the learning process:
tokenizer = learner.learn("/data/model-32k")
The returned tokenizer
instance can be used to apply subword tokenization on new data.
Interface
# See https://github.com/rsennrich/subword-nmt/blob/master/subword_nmt/learn_bpe.py
# for argument documentation.
learner = pyonmttok.BPELearner(
tokenizer: Optional[pyonmttok.Tokenizer] = None, # Defaults to tokenization mode "space".
symbols: int = 10000,
min_frequency: int = 2,
total_symbols: bool = False,
)
# See https://github.com/google/sentencepiece/blob/master/src/spm_train_main.cc
# for available training options.
learner = pyonmttok.SentencePieceLearner(
tokenizer: Optional[pyonmttok.Tokenizer] = None, # Defaults to tokenization mode "none".
keep_vocab: bool = False, # Keep the generated vocabulary (model_path will act like model_prefix in spm_train)
**training_options,
)
learner.ingest(text: str)
learner.ingest_file(path: str)
learner.ingest_token(token: Union[str, pyonmttok.Token])
learner.learn(model_path: str, verbose: bool = False) -> pyonmttok.Tokenizer
Vocabulary
Example
tokenizer = pyonmttok.Tokenizer("aggressive", joiner_annotate=True)
with open("train.txt") as train_file:
vocab = pyonmttok.build_vocab_from_lines(
train_file,
tokenizer=tokenizer,
maximum_size=32000,
special_tokens=["<blank>", "<unk>", "<s>", "</s>"],
)
with open("vocab.txt", "w") as vocab_file:
for token in vocab.ids_to_tokens:
vocab_file.write("%s\n" % token)
Interface
# Special tokens are added with ids 0, 1, etc., and are never removed by a resize.
vocab = pyonmttok.Vocab(special_tokens: Optional[List[str]] = None)
# Read-only properties.
vocab.tokens_to_ids -> Dict[str, int]
vocab.ids_to_tokens -> List[str]
vocab.counters -> List[int]
# Get or set the ID returned for out-of-vocabulary tokens.
# By default, it is the ID of the token <unk> if present in the vocabulary, len(vocab) otherwise.
vocab.default_id -> int
vocab.lookup_token(token: str) -> int
vocab.lookup_index(index: int) -> str
# Calls lookup_token on a batch of tokens.
vocab.__call__(tokens: List[str]) -> List[int]
vocab.__len__() -> int # Implements: len(vocab)
vocab.__contains__(token: str) -> bool # Implements: "hello" in vocab
vocab.__getitem__(token: str) -> int # Implements: vocab["hello"]
# Add tokens to the vocabulary after tokenization.
# If a tokenizer is not set, the text is split on spaces.
vocab.add_from_text(text: str, tokenizer: Optional[pyonmttok.Tokenizer] = None) -> None
vocab.add_from_file(path: str, tokenizer: Optional[pyonmttok.Tokenizer] = None) -> None
vocab.add_token(token: str) -> None
vocab.resize(maximum_size: int = 0, minimum_frequency: int = 1) -> None
# Build a vocabulary from an iterator of lines.
# If a tokenizer is not set, the lines are split on spaces.
pyonmttok.build_vocab_from_lines(
lines: Iterable[str],
tokenizer: Optional[pyonmttok.Tokenizer] = None,
maximum_size: int = 0,
minimum_frequency: int = 1,
special_tokens: Optional[List[str]] = None,
) -> pyonmttok.Vocab
# Build a vocabulary from an iterator of tokens.
pyonmttok.build_vocab_from_tokens(
tokens: Iterable[str],
maximum_size: int = 0,
minimum_frequency: int = 1,
special_tokens: Optional[List[str]] = None,
) -> pyonmttok.Vocab
Token API
The Token API allows to tokenize text into pyonmttok.Token
objects. This API can be useful to apply some logics at the token level but still retain enough information to write the tokenization on disk or detokenize.
Example
>>> tokenizer = pyonmttok.Tokenizer("aggressive", joiner_annotate=True)
>>> tokens = tokenizer.tokenize("Hello World!", as_token_objects=True)
>>> tokens
[Token('Hello'), Token('World'), Token('!', join_left=True)]
>>> tokens[-1].surface
'!'
>>> tokenizer.serialize_tokens(tokens)[0]
['Hello', 'World', '■!']
>>> tokens[-1].surface = '.'
>>> tokenizer.serialize_tokens(tokens)[0]
['Hello', 'World', '■.']
>>> tokenizer.detokenize(tokens)
'Hello World.'
Interface
The pyonmttok.Token
class has the following attributes:
surface
: a string, the token value
type
: a pyonmttok.TokenType
value, the type of the token
join_left
: a boolean, whether the token should be joined to the token on the left or not
join_right
: a boolean, whether the token should be joined to the token on the right or not
preserve
: a boolean, whether joiners and spacers can be attached to this token or not
features
: a list of string, the features attached to the token
spacer
: a boolean, whether the token is prefixed by a SentencePiece spacer or not (only set when using SentencePiece)
casing
: a pyonmttok.Casing
value, the casing of the token (only set when tokenizing with case_feature
or case_markup
)
The pyonmttok.TokenType
enumeration is used to identify tokens that were split by a subword tokenization. The enumeration has the following values:
TokenType.WORD
TokenType.LEADING_SUBWORD
TokenType.TRAILING_SUBWORD
The pyonmttok.Casing
enumeration is used to identify the original casing of a token that was lowercased by the case_feature
or case_markup
tokenization options. The enumeration has the following values:
Casing.LOWERCASE
Casing.UPPERCASE
Casing.MIXED
Casing.CAPITALIZED
Casing.NONE
The Tokenizer
instances provide methods to serialize or deserialize Token
objects:
# Serialize Token objects to strings that can be saved on disk.
tokenizer.serialize_tokens(
tokens: List[pyonmttok.Token],
) -> Tuple[List[str], Optional[List[List[str]]]]
# Deserialize strings into Token objects.
tokenizer.deserialize_tokens(
tokens: List[str],
features: Optional[List[List[str]]] = None,
) -> List[pyonmttok.Token]
Utilities
Interface
# Returns True if the string has the placeholder format.
pyonmttok.is_placeholder(token: str)
# Sets the random seed for reproducible tokenization.
pyonmttok.set_random_seed(seed: int)