Skip to main content

Python bindings for the Operon symbolic regression library

Project description

pyoperon

License Build-linux Build-macos Matrix chat

pyoperon is the python bindings library of Operon, a modern C++ framework for symbolic regression developed by Heal-Research at the University of Applied Sciences Upper Austria.

A scikit-learn regressor is also available:

from pyoperon.sklearn import SymbolicRegressor

The example folder contains sample code for using either the Python bindings directly or the pyoperon.sklearn module.

Installation

Due to ABI incompatiblity, the PyOperon version on PyPI is outdated. The wheels are instead released on github: https://github.com/heal-research/pyoperon/releases/

Building from source

Conda/Mamba

  1. Clone the repository
git clone https://github.com/heal-research/pyoperon.git
cd pyoperon
  1. Install and activate the environment (replace micromamba with your actual program)
micromamba env create -f environment.yml
micromamba activate pyoperon
  1. Install the dependencies
export CC=${CONDA_PREFIX}/bin/clang
export CXX=${CONDA_PREFIX}/bin/clang++
./script/dependencies.sh
  1. Install pyoperon
pip install .

Nix

Use this environment created with poetry2nix

nix develop github:foolnotion/poetryenv --no-write-lock-file

This will install operon and dependencies. Modify the flake file if you need additional python libraries (see https://github.com/nix-community/poetry2nix#how-to-guides)

Contributing

See the CONTRIBUTING document.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyoperon-0.5.0.dev1.tar.gz (475.6 kB view details)

Uploaded Source

Built Distributions

pyoperon-0.5.0.dev1-cp313-cp313t-manylinux_2_28_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.13t manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp313-cp313-manylinux_2_28_x86_64.whl (1.4 MB view details)

Uploaded CPython 3.13 manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp312-cp312-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp311-cp311-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp310-cp310-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp39-cp39-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

pyoperon-0.5.0.dev1-cp38-cp38-manylinux_2_28_x86_64.whl (1.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

File details

Details for the file pyoperon-0.5.0.dev1.tar.gz.

File metadata

  • Download URL: pyoperon-0.5.0.dev1.tar.gz
  • Upload date:
  • Size: 475.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pyoperon-0.5.0.dev1.tar.gz
Algorithm Hash digest
SHA256 eb4f54e2d41b66b08b5419b245c20098c0834d10293d573c1a060bf4e371a8ae
MD5 bc2d9beba768f2a2333a1f67264ff5ea
BLAKE2b-256 51457f5eced79a5d7725991aaf2858811c0c2a56195d9311aeb43f50ee9cc30e

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp313-cp313t-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp313-cp313t-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 fb47363df5cbc7a3dad4088c1e8c98a548bdb0f3fd79d3b6d018cb26beb36d56
MD5 49c053f800e2d6daa59e10ba37944be9
BLAKE2b-256 2f6955d5412014a501cd0e5de345fe2a67c32fee6031cc95f2709d82de84a6e3

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp313-cp313-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp313-cp313-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1e4da7dbd5cafe88f7bb81b9b78899ac11c671d9ebf02882c106a957f4552b7d
MD5 4bfd70515aaa97c20ea0620fef5ca7c9
BLAKE2b-256 13bbd17133fcbf11fd2cfe5de83f8dc2277214744a755adacbc50e58a7cbae1d

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 951b8e694f43eab042f8aad99e6e542915ffd9153d7b31b2de7a260874bfe03c
MD5 91ae9f4c1eabc27970f79fc17e600ba6
BLAKE2b-256 93b7785bdd54d5c2cbc6181cfe8b2395986428e4bb853d4d405c088dbd6f6f66

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 773b24a8757826df6177fc7754582114bf81ab5f25867f7f099ce7359c815dea
MD5 58bf07abf7ad98e1fb7d4404f847f3d3
BLAKE2b-256 db93fd5d51e3a5982551e8c50aed26b1f4743ca7bb560e066fe39bd4ceb6ca5d

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0c2309f2bf805f914932caad9db90d0593ba8e6898d6ad981f3bb71730661307
MD5 dd3654ba7ecc75406ba64c0e471bb9d5
BLAKE2b-256 d74f8b293457cff9c239e2b9536c505a90126bda4c0a0ff6c6bf3fdafb4be890

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 1f1de98d571aa6d5b7361d5ada6583d308140f688cb05fd7bdefea6a59227b2c
MD5 ccab958d119f8fca5fcd4f65e65f452f
BLAKE2b-256 d85844b001190789488a90ac7a7b8889e1da9c579ece7561a65221f3ae68334c

See more details on using hashes here.

File details

Details for the file pyoperon-0.5.0.dev1-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for pyoperon-0.5.0.dev1-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 f7032aac71e3246523f94709ea5728be10b8d70e9d124c419d08ca73a77bd269
MD5 dc235557b64dc3767042382d1fe4b513
BLAKE2b-256 10bce79101ed77557ab86409101bcaa69ec09287974b4101ae6054bc625d5673

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page