Skip to main content

A Python Package for Analyzing Lattice Polytopes.

Project description

PyPALP: a Python Package for Analyzing Lattice Polytopes

Python CI

This project provides Python bindings for the PALP package developed by M. Kreuzer and H. Skarke. The purpose of this project is to make PALP more easily installable and accessible. The original PALP code can be found in their website or in their GitLab. PyPALP uses a fork with minor modifications, which can be found here.

The functionality and documentation of this project are currently fairly limited. If there is enough interest, I will continue to expand on both functionality and documentation. Please open an issue to ask for more functionality, or even better, make a pull request!

PALP is written in C and was never meant to have Python bindings. Some of the design choices make it quite tricky to do so, but I have found some hacky ways to work around them. I have tried to document the

Installation

PyPALP can be installed in most cases simply by running

pip install pypalp

If you want to tweak compilation parameters or anything else, you can clone the repository and build the wheel yourself.

git clone --recurse-submodules https://github.com/ariostas/pypalp.git
cd pypalp
pip install .

Usage

Here is a basic example that shows the available functionality.

>>> from pypalp import Polytope
>>>
>>> # Constructing polytopes
>>> polytope_from_points = Polytope([[1, 1], [-1, 1], [1, -1], [-1, -1]])
>>> polytope_from_weight_system = Polytope([4, 7, 7, 10, 12, 40])
>>> polytope_from_weight_system_string = Polytope("4 7 7 10 12  40=d  rn  H:28  16  M: 23  7  N:25  6  P:3  F:2  7 12")
>>>
>>> # Available computations
>>> p = Polytope([[1,0,0,0,0],[0,1,0,0,0],[-1,-1,0,0,0],[0,0,1,0,0],[0,0,-1,0,0],[0,0,0,1,0],[0,0,0,0,1],[0,0,0,-1,-1]])
>>> p
A 5-dimensional PALP polytope
>>> p.dim()
5
>>> p.vertices()
array([[ 1,  0,  0,  0,  0],
       [ 0,  1,  0,  0,  0],
       [-1, -1,  0,  0,  0],
       [ 0,  0,  1,  0,  0],
       [ 0,  0, -1,  0,  0],
       [ 0,  0,  0,  1,  0],
       [ 0,  0,  0,  0,  1],
       [ 0,  0,  0, -1, -1]])
>>> p.points()
array([[ 1,  0,  0,  0,  0],
       [ 0,  1,  0,  0,  0],
       [-1, -1,  0,  0,  0],
       [ 0,  0,  1,  0,  0],
       [ 0,  0, -1,  0,  0],
       [ 0,  0,  0,  1,  0],
       [ 0,  0,  0,  0,  1],
       [ 0,  0,  0, -1, -1],
       [ 0,  0,  0,  0,  0]])
>>> p.is_ip()
True
>>> p.is_reflexive()
True
>>> p.normal_form()
array([[ 1,  0,  0,  0,  0],
       [-1,  0,  0,  0,  0],
       [ 0,  1,  0,  0,  0],
       [ 0,  0,  1,  0,  0],
       [ 0,  0,  0,  1,  0],
       [ 0,  0, -1, -1,  0],
       [ 0,  0,  0,  0,  1],
       [ 0, -1,  0,  0, -1]])
>>> p.normal_form(affine=True)
array([[ 2,  0,  0,  0,  0],
       [ 0,  1,  0,  0,  0],
       [ 0,  0,  1,  0,  0],
       [ 3, -1, -1,  0,  0],
       [ 0,  0,  0,  1,  0],
       [ 0,  0,  0,  0,  1],
       [ 3,  0,  0, -1, -1],
       [ 0,  0,  0,  0,  0]])
>>> # Nef partitions are returned as a list of 3-tuples (partitions, hodge_diamond, chi)
>>> p.nef_partitions(codim=2, keep_symmetric=False, keep_products=False, keep_projections=False, with_hodge_numbers=True)
[([[0, 1, 5, 6], [2, 3, 4, 7]], [[1, 0, 0, 1], [0, 3, 51, 0], [0, 51, 3, 0], [1, 0, 0, 1]], -96), ([[0, 1, 3, 5], [2, 4, 6, 7]], [[1, 0, 0, 1], [0, 3, 51, 0], [0, 51, 3, 0], [1, 0, 0, 1]], -96), ([[0, 1, 3, 5, 6], [2, 4, 7]], [[1, 0, 0, 1], [0, 3, 60, 0], [0, 60, 3, 0], [1, 0, 0, 1]], -114), ([[0, 1, 3, 4, 5], [2, 6, 7]], [[1, 0, 0, 1], [0, 3, 51, 0], [0, 51, 3, 0], [1, 0, 0, 1]], -96), ([[0, 1, 3, 4, 5, 6], [2, 7]], [[1, 0, 0, 1], [0, 3, 69, 0], [0, 69, 3, 0], [1, 0, 0, 1]], -132), ([[0, 1, 2, 5], [3, 4, 6, 7]], [[1, 0, 0, 1], [0, 9, 27, 0], [0, 27, 9, 0], [1, 0, 0, 1]], -36), ([[0, 1, 2, 5, 6], [3, 4, 7]], [[1, 0, 0, 1], [0, 3, 75, 0], [0, 75, 3, 0], [1, 0, 0, 1]], -144), ([[0, 1, 2, 3], [4, 5, 6, 7]], [[1, 0, 0, 1], [0, 19, 19, 0], [0, 19, 19, 0], [1, 0, 0, 1]], 0), ([[0, 1, 2, 3, 5], [4, 6, 7]], [[1, 0, 0, 1], [0, 6, 51, 0], [0, 51, 6, 0], [1, 0, 0, 1]], -90), ([[0, 1, 2, 3, 5, 6], [4, 7]], [[1, 0, 0, 1], [0, 3, 75, 0], [0, 75, 3, 0], [1, 0, 0, 1]], -144), ([[0, 1, 2, 3, 4, 5], [6, 7]], [[1, 0, 0, 1], [0, 3, 75, 0], [0, 75, 3, 0], [1, 0, 0, 1]], -144)]

License

The original PALP code, as well as the binding code in PyPALP are distributed under the GNU General Public License version 3.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pypalp-0.1.0.tar.gz (286.3 kB view details)

Uploaded Source

Built Distributions

pypalp-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (312.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl (279.1 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pypalp-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (312.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl (279.0 kB view details)

Uploaded PyPy macOS 11.0+ ARM64

pypalp-0.1.0-cp313-cp313-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

pypalp-0.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-cp313-cp313-macosx_11_0_arm64.whl (280.7 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pypalp-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

pypalp-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-cp312-cp312-macosx_11_0_arm64.whl (280.7 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pypalp-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

pypalp-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (314.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-cp311-cp311-macosx_11_0_arm64.whl (280.8 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pypalp-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

pypalp-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-cp310-cp310-macosx_11_0_arm64.whl (279.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pypalp-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl (1.3 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

pypalp-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (313.4 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pypalp-0.1.0-cp39-cp39-macosx_11_0_arm64.whl (279.5 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

File details

Details for the file pypalp-0.1.0.tar.gz.

File metadata

  • Download URL: pypalp-0.1.0.tar.gz
  • Upload date:
  • Size: 286.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pypalp-0.1.0.tar.gz
Algorithm Hash digest
SHA256 cafceb46eef40fb49c81e99559092fd9cc9d9d91643675d46c7b56bb2464a482
MD5 b6e25a073a7f34917e2040e3d8debdfc
BLAKE2b-256 8f2f76662f55654667bfba4776d9f8ed75e2fc7fc67054961935479ccc1b2a40

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0.tar.gz:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5f8c33de490857d3adb624d072cddbea28f85458f60677c1683d1ed56373fa5c
MD5 443132ca83284a96674c8bb24b219aa0
BLAKE2b-256 013567a46e0505a7147febb260c62c11534587650d47f70913774ccd0789b5a2

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0734272aefda721778af8682452991d943c0787ec99408520c2d85586ea45378
MD5 7ba5ec157dcd6ce7276d5ea9e51af670
BLAKE2b-256 dacf0d54b9f191387071d37e4bd450c896245e3119984c39f8108253e527940e

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-pp310-pypy310_pp73-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a50652a0166e255baa27ba8e2c15e91280a4d0b4e263697e96a8cadabd6d2a53
MD5 1f5873d2ca2b5a892b0b7626965e1067
BLAKE2b-256 ff443f2b280efdcff27b24d984801c7f8366b081833648d7d80a06be82449948

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 11cfb76c5710fb1220822d8468470e5bdae586f48cfd981132e559550f5f0a8a
MD5 5f2b73f775cd497c81ec58d3cc246fa9
BLAKE2b-256 d90bacea2df3735365ead3615d10a85b603a8e40669bffb6845055f724103381

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-pp39-pypy39_pp73-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2885a3ce96c261df9f940922f0a75d4895dae7fe71fb881f9b39b7b7bfee9d8c
MD5 206d3c2ae6cf4e05a9f3cec984be8b21
BLAKE2b-256 ca175c8625dfa28e40aee0a77971648f7a96e78687217ea94482ae5c74873842

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp313-cp313-musllinux_1_2_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4925477adb8262fe794304703e41548e59d1d3162776c1589cbd64b8a13e165e
MD5 92d354f0be8d65aa0c7c8416c0a19680
BLAKE2b-256 932bf6d7ca8e8653b04a7c078872d7eecc144b43d995aa911c38d3e5e1ba3d15

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 955c8ff89b541f9b69385ba4b0639fde5391d3f657ba48df7f19ff63f68ccf10
MD5 54c15e7390832b5c86e79aee84226f90
BLAKE2b-256 edbcdd4339bb78c9ee8513e45338c4ad14879628df1df7432cea112199c7a6ed

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp313-cp313-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 d3ea5fc6a66e487f287f096ba19d21b38944f39e7e103c5e0e24cc274aecbbf0
MD5 fc0a283b50a50366f0e5fd250168f593
BLAKE2b-256 cd47c2976a1ada340bfc300a2686794ec3d4c85bc0b35d45dd49b2bda3da4b76

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp312-cp312-musllinux_1_2_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02a7f9a9da9c165dc92570cc1d6c34ff3239f9e9c7b0b43320bbb48c4f8380ff
MD5 107b730467445f5b0bef580d00d6140b
BLAKE2b-256 b9b3d6072f94a2c1ece40d59ee1578826bbcd47812e006755ffcba2894c258fc

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 97b141309549973215f2e7811503a3af15de935ab20f9c5a55250a449e1081c6
MD5 71e401a3c633a53e71fb78cc6ca9f361
BLAKE2b-256 b44a29456530b4325e5f4d9db3c57e45d8af23c0138a3e72aef6a48172e72540

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp312-cp312-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a50f8ee2dd5f4617fd5b4b8c911f126dd5f53ddfc3983afcb808f98596881fbe
MD5 3c0d31d077d3c4c5ab30570b88896cd4
BLAKE2b-256 57695dcbeb34351833ab79aad6d1d429ed6a3eb5b3eafc289634ad23b6cf9aa4

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp311-cp311-musllinux_1_2_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a727053f3df9cb4685a73d70b03fb5cae1c52df72ad020d00575573f34f7ede9
MD5 3c4167cceed52998227ea8e382e16f51
BLAKE2b-256 3a621a5fca941f2827952a0e0be25c6ed113679bef94d89a6fe148482554f53d

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 8559c9f09732c3489d050fbdf6ec7710eee2cb17006baa64d3e12c6122b37a10
MD5 63d0b5e0814a27398982b3192065da64
BLAKE2b-256 cbee636ba65684a87335c4af19ca6569d8aa5f0338d10aef8e6f4f890bbd3f86

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp311-cp311-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c9e6123c39601462e6942e4508cf9c53ae920ff3dc777473712ffc911e983109
MD5 e9a208694fea132eef08f67694563259
BLAKE2b-256 09a4b336a4da3f5a227e33fd4d9844afb9e19cf9a775dec639c024407d31db45

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp310-cp310-musllinux_1_2_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1464ea34672e20312548d036a542049b46ac4f5fbdaad8e93033039778076818
MD5 270bab4c652ba10c241f4ae8835d54ba
BLAKE2b-256 562a3d05d57eb9860c66d648e264a0dff457348bab41a5b0453ab8f65784ad14

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 53a82e74d3e6e8bedd9e3a78c0ab28e70057d662f1a1d1488d81d0453412070c
MD5 1d0c8b5c595dc2cbec5aef989a4f5169
BLAKE2b-256 3accba703529e355bd0cc3d11d9800f809bab481b41bfe5620aab053094214cb

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp310-cp310-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 86ec7efe074abfa50ed1fbe428557e722b167a0cbebc642b6d228e8ac0d69cd1
MD5 1d6d5ed0ebf47163170abe399645b0fc
BLAKE2b-256 09bf6393589b79887cd1b5a2d028713c46ad98ff1444ad89e6f6daf88786f496

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp39-cp39-musllinux_1_2_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f1f5bb971776d9e1282129a64ce40ab9c6b6d9fa46b9df4b3c077311b63d4343
MD5 9ea5e6c7ec73bbefef5b516ed39b95e5
BLAKE2b-256 5909f2d0ab749317584b758e637f61ee35c3f1a2caaee9d4b4a27dd697c631a1

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

File details

Details for the file pypalp-0.1.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pypalp-0.1.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 62ea34e55b56c407e50d0629dad4c2ad0d9d767183a28ab5e48896e08844e098
MD5 0124325707907ef88c03444d63c8fe88
BLAKE2b-256 9d2610ee038e115d8a64676afddf4c0100b3434c411320c6035a1fd445bc04aa

See more details on using hashes here.

Provenance

The following attestation bundles were made for pypalp-0.1.0-cp39-cp39-macosx_11_0_arm64.whl:

Publisher: deploy.yml on ariostas/pypalp

Attestations:

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page