Skip to main content

A Python Toolbox for Data Mining on Partially-Observed Time Series

Project description

Welcome to PyPOTS

A Python Toolbox for Data Mining on Partially-Observed Time Series

⦿ Motivation: Due to all kinds of reasons like failure of collection sensors, communication error, and unexpected malfunction, missing values are common to see in time series from the real-world environment. This makes partially-observed time series (POTS) a pervasive problem in open-world modeling and prevents advanced data analysis. Although this problem is important, the area of data mining on POTS still lacks a dedicated toolkit. PyPOTS is created to fulfill this blank, to become a handy toolbox that is going to make data mining on POTS easy rather than tedious, to help engineers and researchers focus more on the core problems in their hands rather than on how to deal with the missing parts in their data.

⦿ Mission: PyPOTS will keep integrating classical and the latest state-of-the-art data mining algorithms for partially-observed multivariate time series. For sure, besides various algorithms, PyPOTS is going to have unified APIs together with detailed documentation and interactive examples across algorithms as tutorials.

❖ Installation

Install the latest release from PyPI:

pip install pypots

Install with the latest code on GitHub:

pip install https://github.com/WenjieDu/PyPOTS/archive/master.zip

❖ Available Algorithms

Task Type Model Type Algorithm Year Reference
Imputation Neural Network SAITS: Self-Attention-based Imputation for Time Series 2022 [^1]
Imputation Neural Network Transformer 2017 [^2] [^1]
Imputation,
Classification
Neural Network BRITS: Bidirectional Recurrent Imputation for Time Series 2018 [^3]

‼️ PyPOTS is currently under development. If you like it and look forward to its growth, please give PyPOTS a star and watch it to keep you posted on its progress and to let me know that its development is meaningful. If you have any feedback, or want to contribute ideas/suggestions or share time-series related algorithms/papers, please join PyPOTS community and , or drop me an email.

Thank you all for your attention! 😃

[^1]: Du, W., Cote, D., & Liu, Y. (2022). SAITS: Self-Attention-based Imputation for Time Series. ArXiv, abs/2202.08516. [^2]: Vaswani, A., Shazeer, N.M., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., & Polosukhin, I. (2017). Attention is All you Need. NeurIPS 2017. [^3]: Cao, W., Wang, D., Li, J., Zhou, H., Li, L., & Li, Y. (2018). BRITS: Bidirectional Recurrent Imputation for Time Series. NeurIPS 2018.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

pypots-0.0.2-py3-none-any.whl (39.5 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page