Skip to main content

PyQUBO allows you to create QUBOs or Ising models from mathematical expressions.

Project description

https://img.shields.io/pypi/v/pyqubo.svg https://codecov.io/gh/recruit-communications/pyqubo/branch/master/graph/badge.svg https://readthedocs.org/projects/pyqubo/badge/?version=latest https://static.pepy.tech/badge/pyqubo https://github.com/recruit-communications/pyqubo/actions/workflows/build_and_upolad.yaml/badge.svg

PyQUBO

PyQUBO allows you to create QUBOs or Ising models from flexible mathematical expressions easily. Some of the features of PyQUBO are

  • Python based (C++ backend).

  • Fully integrated with Ocean SDK. (details)

  • Automatic validation of constraints. (details)

  • Placeholder for parameter tuning. (details)

For more details, see PyQUBO Documentation.

Example Usage

Creating QUBO

This example constructs a simple expression and compile it to model. By calling model.to_qubo(), we get the resulting QUBO. (This example solves Number Partitioning Problem with a set S = {4, 2, 7, 1})

>>> from pyqubo import Spin
>>> s1, s2, s3, s4 = Spin("s1"), Spin("s2"), Spin("s3"), Spin("s4")
>>> H = (4*s1 + 2*s2 + 7*s3 + s4)**2
>>> model = H.compile()
>>> qubo, offset = model.to_qubo()
>>> pprint(qubo) # doctest: +SKIP
{('s1', 's1'): -160.0,
('s1', 's2'): 64.0,
('s1', 's3'): 224.0,
('s1', 's4'): 32.0,
('s2', 's2'): -96.0,
('s2', 's3'): 112.0,
('s2', 's4'): 16.0,
('s3', 's3'): -196.0,
('s3', 's4'): 56.0,
('s4', 's4'): -52.0}

Integration with D-Wave Ocean

PyQUBO can output the BinaryQuadraticModel(BQM) which is compatible with Sampler class defined in D-Wave Ocean SDK. In the example below, we solve the problem with SimulatedAnnealingSampler.

>>> import neal
>>> sampler = neal.SimulatedAnnealingSampler()
>>> bqm = model.to_bqm()
>>> sampleset = sampler.sample(bqm, num_reads=10)
>>> decoded_samples = model.decode_sampleset(sampleset)
>>> best_sample = min(decoded_samples, key=lambda x: x.energy)
>>> best_sample.sample # doctest: +SKIP
{'s1': 0, 's2': 0, 's3': 1, 's4': 0}

If you want to solve the problem by actual D-Wave machines, just replace the sampler by a DWaveCliqueSampler instance, for example.

For more examples, see example notebooks.

Benchmarking

Since the core logic of the new PyQUBO (>=1.0.0) is written in C++ and the logic itself is also optimized, the execution time to produce QUBO has become shorter. We benchmarked the execution time to produce QUBOs of TSP with the new PyQUBO (1.0.0) and the previous PyQUBO (0.4.0). The result shows the new PyQUBO runs 1000 times faster as the problem size increases.

https://raw.githubusercontent.com/recruit-communications/pyqubo/master/images/benchmark.svg

Execution time includes building Hamiltonian, compilation, and producing QUBOs. The code to produce the above result is found in here.

Installation

pip install pyqubo

or

python -m pip install .

Supported Python Versions

Python 3.8, 3.9, 3.10, 3.11, 3.12, 3.13 are supported.

Supported Operating Systems

  • Linux (32/64bit)

  • OSX (x86_64(Intel)/arm64(Apple Silicon), 64bit, >=10.9)

  • Win (64bit)

Test

Run all tests.

export USE_TEST=1
python -m unittest discover tests

Show coverage report.

export USE_TEST=1
coverage run -m unittest discover
coverage html

Run doctest.

make doctest

Dependency

This repository contains the source code of cimod which is licensed under the Apache License 2.0. cimod is the C++ header-only library for a binary quadratic model, developed by OpenJij.

Citation

If you use PyQUBO in your research, please cite the following papers ([M. Zaman, et al., 2021], [K. Tanahashi, et al., 2019]).

@article{zaman2021pyqubo,
    title={PyQUBO: Python Library for QUBO Creation},
    author={Zaman, Mashiyat and Tanahashi, Kotaro and Tanaka, Shu},
    journal={IEEE Transactions on Computers},
    year={2021},
    publisher={IEEE}
}

@article{tanahashi2019application,
  title={Application of Ising Machines and a Software Development for Ising Machines},
  author={Tanahashi, Kotaro and Takayanagi, Shinichi and Motohashi, Tomomitsu and Tanaka, Shu},
  journal={Journal of the Physical Society of Japan},
  volume={88},
  number={6},
  pages={061010},
  year={2019},
  publisher={The Physical Society of Japan}
}

Organization

Recruit Communications Co., Ltd.

Licence

Released under the Apache License 2.0.

Contribution

We welcome contributions to this project. See CONTRIBUTING.

We thank all contributors, especially @tail-island and @29rou.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pyqubo-1.5.0-cp313-cp313-win_amd64.whl (403.5 kB view details)

Uploaded CPython 3.13 Windows x86-64

pyqubo-1.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.9 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp313-cp313-macosx_11_0_arm64.whl (209.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

pyqubo-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl (235.1 kB view details)

Uploaded CPython 3.13 macOS 10.13+ x86-64

pyqubo-1.5.0-cp312-cp312-win_amd64.whl (403.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

pyqubo-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (256.8 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp312-cp312-macosx_11_0_arm64.whl (209.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

pyqubo-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl (235.0 kB view details)

Uploaded CPython 3.12 macOS 10.13+ x86-64

pyqubo-1.5.0-cp311-cp311-win_amd64.whl (403.2 kB view details)

Uploaded CPython 3.11 Windows x86-64

pyqubo-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (258.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp311-cp311-macosx_11_0_arm64.whl (208.9 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

pyqubo-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl (234.5 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

pyqubo-1.5.0-cp310-cp310-win_amd64.whl (401.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

pyqubo-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (257.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp310-cp310-macosx_11_0_arm64.whl (207.5 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

pyqubo-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl (233.1 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

pyqubo-1.5.0-cp39-cp39-win_amd64.whl (400.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

pyqubo-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (257.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp39-cp39-macosx_11_0_arm64.whl (207.6 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

pyqubo-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl (233.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

pyqubo-1.5.0-cp38-cp38-win_amd64.whl (405.1 kB view details)

Uploaded CPython 3.8 Windows x86-64

pyqubo-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (257.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

pyqubo-1.5.0-cp38-cp38-macosx_11_0_arm64.whl (207.4 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

pyqubo-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl (232.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file pyqubo-1.5.0-cp313-cp313-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp313-cp313-win_amd64.whl
  • Upload date:
  • Size: 403.5 kB
  • Tags: CPython 3.13, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 94c4b8764f5cb063f71d2eab0f23577b9edea2820ef5a8c6685f9b99c3454644
MD5 06e8953f84e35c42ef0044cce19de851
BLAKE2b-256 f4601110cc30756924631252b1013972503b224a631fd597e80980af76d09f14

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d7f2d9f309657b234eb19cb50b0617142cadce65243a118ff8a04774ca4351be
MD5 11839905d32da046f09d24a77c64c759
BLAKE2b-256 e99b325ea620ec0d6e592e18677fa7e4a8b56f75debe3ce0f9ced5c9d849e822

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 7cbd5f2d8842f4a506c2af337436a485969c25a77ef4c376678e59a513b83655
MD5 c45612b3a4b8ef48f48cf2abdf33a2f4
BLAKE2b-256 450eb5fe9aa8283dbb9864ab4a7b66fc9c362111c11106a45655eb239fef32e1

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp313-cp313-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 b01e724bcb573bdba31e5948a6718bb3a0135a3a84f1556df4271fe7334f54c0
MD5 477a8df2ba0f4af7aaa7ed657c904bf5
BLAKE2b-256 803ab21d617500f094474e431dc25f0d8c3c9d7df6a1f36e5631e8acc86c4c33

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 403.5 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 665d41e73c5504db44b2bd8679a610a326dfb188030bf5c90ea1dfe0f238bec4
MD5 43df14958eebdf91ca450ec46b5cbaa0
BLAKE2b-256 2e34405974062a669f3e416dea60317d336498b0a828bf73b60ecfefda6fc899

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 347d66417ce530ecca325d88dce0c40288176fe0864867ab3addd2dd155d6eeb
MD5 79fb2d7e485186a007ef57d7770de480
BLAKE2b-256 ca61ea8cf90be145fc020309671238de774f79f9b6361b1bec56533bacdc3fb7

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 da76d681800692663b83b2f39943b4c1b0590630989783ecdd429fafd96b3928
MD5 9e12df4d0c2582aec4723e97da4b77a7
BLAKE2b-256 e0d4af8f1824e936ed0385984b7ec9b80b3ef2a147b71c49ae640ff7222a25a1

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp312-cp312-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 8db7ebf99a0ca6137b3fd979e8a123f32942abca4dbcfb82f59275eec17bf3bb
MD5 d5fc4249ed48da6abd4524d0148bb165
BLAKE2b-256 85b0fdcc75f4e6006609ef7360e92e3977ea27a6f4d6d009011e880f9d1b22d2

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 403.2 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 3ad3c8dbaf59d5da9a819bb259192a5f0602b10eed4eb1367217db757e4f68de
MD5 415cc9c08c7485ceb7bbb5b4e57292a0
BLAKE2b-256 1f8747df0ea82252d485791b20d05a9b1d942d717e6e3dbd3c1266a5f3c1aff5

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 78cffc164ce014d130f57d915ff0ef5629ff56971843a8ba7b0a7221efd7b570
MD5 9b18864e1f7eb4a66ebcac53c65408d4
BLAKE2b-256 3038508c3399730a300eecf7dffc99d3f6cf76abc20d72bc3794a4e2db776277

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 89483fa6c34bf098ae37a59cf2754ff275a2d597ebf9bbb0d6c4351394813e5e
MD5 b9fa7b5d960e11aaa56c84b51648dd9b
BLAKE2b-256 9fa889ce2c8e309eaec4b49c92a0e0af22c79799fee3cfa54d514bde1deb3354

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1da327bea2ece9de37665fd0e8409f75f77e6d40c0945127808eaeb81fff947f
MD5 6b5130151a9e4b79016ea28688115b0a
BLAKE2b-256 ec4cd257eb1a20cc71fed5371188ff4432d55c076a4468be003c36e5627237df

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 401.6 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 92bf3fcb7f358ad681039c122907c3188bedae264e12dd8fd0ff6c7af41a7219
MD5 b8f74a5885a3818ca2edf63b9d03329f
BLAKE2b-256 ebf12b4a44a124b82de2cc7942b0c618f3e4315c1fb89816ca1be85d24c6b444

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e6dd28cf57da810bc4a8def5eaeca20ba1c4f77d94c0605f09c5e1587d396a5
MD5 d4be9e1de0bde0a89840dc44e8fb2bfa
BLAKE2b-256 ad181de5bd9d635212802236414324d7f147bdb8453529eb09669f47182ae773

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 fc0c03c7424aa72299a8e9021a2132f74a24c47311c4afc9841d0adf62582286
MD5 eba81b21b4cfe0cb613662f913cc68e5
BLAKE2b-256 efccd25b3f47e2edad63ca09f8075b6ece2e136a50c9fb6b6c7ad1f1b148096d

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f443b03f667723651e62ae1e2910cd4441e20f42a28c87c1c0909b960a8d302c
MD5 87d5c11b6f9b93f54e427d9395874e75
BLAKE2b-256 06c43c8171e4ecc15256b371c99ef2dff411dcaf58d334debb6e1efef831eb59

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 400.0 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 cc021d32b20fc2d0fcd46e5512c6ac33b5df396ae7cf87464f426d1025c3fe94
MD5 1df35ff89343b597926e6fef1f02ebb5
BLAKE2b-256 f182f26e0997c92e92208830af7208c867b055609850321533bf212355a90fda

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d881a05dbfcdc77752fa06ddcc2f0db4bb903607b18771f7660da6783f7b08a2
MD5 8c7c205894d639c3c6492c633b0290e6
BLAKE2b-256 15c2dfbb20b6fd37282e44fe0c573f791ec90bbe782c92e55f10ccedcde17859

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 399203e43db297166acf8629086736f0eca54391943ce00f672360e636b9166c
MD5 4e1280feffe7c4891d104fc319d054df
BLAKE2b-256 c091fc3529b95fbf7500f341787318b10f18664eac48d258ca60bca1fcb27ec2

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 b60a6ecea8daa01b19507cff39a41082d82f82de3bb9eddbb8e374742a76df66
MD5 07389b6c8db664efc055ec0ee16c3428
BLAKE2b-256 7f66861924b05a052d4ed0011ba6ba51f509f44aac4ad2b9603cf673e27076bf

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: pyqubo-1.5.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 405.1 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for pyqubo-1.5.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 86546fa8cc37c3dd16927b04ed33d682136e221c631ee215f631f9d679731615
MD5 62a7b9ce402de51b07dea24afa3be3d1
BLAKE2b-256 4934a82312277a207ef253194ac69473f46d7cc3d6d4e115d8f0772fa8585095

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a011fc238ef430a0d36c14bc8af33b397f28c8d62ee734c79a9c23cfc89f73e8
MD5 76cd3eab2f026d7cd9823233f305f2fb
BLAKE2b-256 2dad1a642067639c215a6f66206b2f6eb443abf286e549d82706a018cfcf0f05

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ace18ed66bba4df88d9a70951a360492ff73525a9df28f34c0a9ec0dcc2175f4
MD5 0db76fc59e79123f4980820b01d5ddf9
BLAKE2b-256 4016eeb1e8587714308ee45403b26b24c049020ad14231a84635f5e0e3c8c4d5

See more details on using hashes here.

File details

Details for the file pyqubo-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for pyqubo-1.5.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 150bb47df21c1cbf7f8e46049e459905aa0975f31cdc6eae6d580b112e792a75
MD5 097c6f7d8d4870a1910a7553d0614e0b
BLAKE2b-256 4443c6ca36143c84ab74eb73ee81a026883b56f5db558ee0f3953aa496670530

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page