Skip to main content

Reads/writes R RData and Rds files into/from pandas data frames.

Project description

A Python package to read and write R RData and Rds files into/from pandas data frames. It does not need to have R or other external dependencies installed. It is based on the C library librdata and a modified version of the cython wrapper jamovi-readstat.
Please visit out project home page for more information:
https://github.com/ofajardo/pyreadr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreadr-0.1.8.tar.gz (152.5 kB view details)

Uploaded Source

Built Distributions

pyreadr-0.1.8-cp37-none-win_amd64.whl (200.3 kB view details)

Uploaded CPython 3.7 Windows x86-64

pyreadr-0.1.8-cp37-cp37m-manylinux1_x86_64.whl (254.6 kB view details)

Uploaded CPython 3.7m

pyreadr-0.1.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (266.7 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.1.8-cp36-none-win_amd64.whl (200.3 kB view details)

Uploaded CPython 3.6 Windows x86-64

pyreadr-0.1.8-cp36-cp36m-manylinux1_x86_64.whl (254.6 kB view details)

Uploaded CPython 3.6m

pyreadr-0.1.8-cp36-cp36m-manylinux1_i686.whl (248.8 kB view details)

Uploaded CPython 3.6m

pyreadr-0.1.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (268.8 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.1.8-cp35-none-win_amd64.whl (199.0 kB view details)

Uploaded CPython 3.5 Windows x86-64

pyreadr-0.1.8-cp35-cp35m-manylinux1_x86_64.whl (253.5 kB view details)

Uploaded CPython 3.5m

pyreadr-0.1.8-cp35-cp35m-manylinux1_i686.whl (247.7 kB view details)

Uploaded CPython 3.5m

pyreadr-0.1.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (264.2 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyreadr-0.1.8.tar.gz.

File metadata

  • Download URL: pyreadr-0.1.8.tar.gz
  • Upload date:
  • Size: 152.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8.tar.gz
Algorithm Hash digest
SHA256 e3e8fe65a97c6f2664d70b02bf3d983ab1a3d0177c0a8d36c33441eb0a8a780e
MD5 a158ea0bbefe209ab6d027e7be00ec25
BLAKE2b-256 562f2729f35288fdfcc78221ce3820b68b2df218f9e2bcacf9ace8a0b1a763c0

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 200.3 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6d9b1a754d44dafb6dc9f26a905af09ca797d948f3f506126f4c732ffac30365
MD5 ea89d06febfdc5ff2b8e0b374211ae85
BLAKE2b-256 0c19a64e4ad81b7b885df6e5e6f71e154a7c0e41b38424b514ad066622ff319d

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 254.6 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23bdac85b4b2945e6d83cdd77e58b070533ac891242796090b35cea42a7d4321
MD5 747dd8946907f815f05232dc390494dc
BLAKE2b-256 a9134ad3ddfccf5e328457e82ea8b5ae3132d5ab4fe031aaacd08b5f055709ec

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.8-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 ee93915aab9d4ccec2aec6795679d8cfb62f4040fbab86a3b25fcb042834735f
MD5 1ddd1d88f996677f50bf08328ad48ab3
BLAKE2b-256 ebc19a3d132ba9c109adae7729f9d4371fff2c39628afbda451159dd3ead89a3

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp36-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 200.3 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 027ea54fff68b60f782085d8fe056332a1ceac0b523238c608ce4f1ea2beed04
MD5 5dbd09ce30e1cf4ad3fff8120e07f2ad
BLAKE2b-256 228637a0d715b44528d1259c56b30e1ab9a8df764f3877f493f5aeedb3b691fc

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 254.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 04b9bd52fc567c10fcbb4789668755ee37bf55895e32407ec1ec848b74be9457
MD5 a4d0ce2b1afb64711f5f658f4a45bdd9
BLAKE2b-256 ddf6bf152061b3a52fa8e217436886fe8a20519c9d9144e2733924b00b1e2249

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 248.8 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 4406a4015be20cba8ea59e71026834db022370f2a5dab1b4d1087c9377f6bb66
MD5 107eceaf4415abdde552343bfff17422
BLAKE2b-256 7e4d9d2cd51160585aef5ca3bec8994cc458157b44af7e3beb4db6ac807f29b2

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.8-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 1ff86855d359624c749084e77642bde87d7612a79c57371a52889ee1fc961a7b
MD5 f00c6894753af6e4a19ecad9e4692a59
BLAKE2b-256 488df6a89365042adf6c40734ddc98787bbb77097bd49c3ccccf55e7dee3f9f5

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp35-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 199.0 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 3bc36ec1bb2550768f49b37f6f99ba2f769973121a967d4774903a4b37566e27
MD5 a2bc53fc5513f1d23b69cda7b8a9217a
BLAKE2b-256 e37f848831e510545cf8982482b7affd476e815622cb875a5206c643eb86f711

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 253.5 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 44f8230d4688d8266e2c9786087f934044fc4bb40d6bec4818431298445d5e69
MD5 770267b1d8de3e2a24d4fb83dc1dbb25
BLAKE2b-256 3c9db591e590e32b9301c5d182c0bd351d9cbb5098b44f32e5156c6246a00342

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.1.8-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 247.7 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.8-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 c330553d7cf76b3dd7166b4bc8ee0672c7184e547bf420fec9b8a0c72494f604
MD5 1c97a5a0da4098f918f5d5c1d0d6acab
BLAKE2b-256 83ccd7ed5bb41a1adb075948c37cf01b4fedaef5e6155f9add7a6446996079b6

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.8-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 641875d01759836a8f0168bf1e433d7ed3d364c537c61027694ddc105e0a9763
MD5 27854ec2b3885ccff098a16c1894c2ad
BLAKE2b-256 75e934a3a54539c256843b6be4f4907f957fa196535aeef5d048d05724c5a46d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page