Skip to main content

Reads/writes R RData and Rds files into/from pandas data frames.

Project description

A Python package to read and write R RData and Rds files into/from pandas data frames. It does not need to have R or other external dependencies installed. It is based on the C library librdata and a modified version of the cython wrapper jamovi-readstat.
Please visit out project home page for more information:
https://github.com/ofajardo/pyreadr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreadr-0.1.9.tar.gz (153.2 kB view details)

Uploaded Source

Built Distributions

pyreadr-0.1.9-cp37-none-win_amd64.whl (201.4 kB view details)

Uploaded CPython 3.7 Windows x86-64

pyreadr-0.1.9-cp37-cp37m-manylinux1_x86_64.whl (256.5 kB view details)

Uploaded CPython 3.7m

pyreadr-0.1.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (271.0 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.1.9-cp36-none-win_amd64.whl (201.5 kB view details)

Uploaded CPython 3.6 Windows x86-64

pyreadr-0.1.9-cp36-cp36m-manylinux1_x86_64.whl (256.6 kB view details)

Uploaded CPython 3.6m

pyreadr-0.1.9-cp36-cp36m-manylinux1_i686.whl (249.9 kB view details)

Uploaded CPython 3.6m

pyreadr-0.1.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (273.3 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.1.9-cp35-none-win_amd64.whl (199.9 kB view details)

Uploaded CPython 3.5 Windows x86-64

pyreadr-0.1.9-cp35-cp35m-manylinux1_x86_64.whl (255.2 kB view details)

Uploaded CPython 3.5m

pyreadr-0.1.9-cp35-cp35m-manylinux1_i686.whl (248.8 kB view details)

Uploaded CPython 3.5m

pyreadr-0.1.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (267.9 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyreadr-0.1.9.tar.gz.

File metadata

  • Download URL: pyreadr-0.1.9.tar.gz
  • Upload date:
  • Size: 153.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9.tar.gz
Algorithm Hash digest
SHA256 825f5c53e2dd6481ffd1737b4222b991b2227d570e0904d3d89f409f12e5c5c4
MD5 dde707fc20f26f872de8336ec98ce722
BLAKE2b-256 91d41313e008e6b6dfcae714cb5bd51690baa8474d2ad93d45aa109906c60b43

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 201.4 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 6cf7787a2f13c2e9114f0600d37b92ccec0249b208f966b2c97a4f5ff0deea7d
MD5 4cf53b00f9d71274e07aa380d5bfe768
BLAKE2b-256 6a8b59c2f54137c0fd2b50b1b5a9632bb60fa57f9feb37a863baa92f32f9ce4b

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 256.5 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 2cbe5f49dffe2fb4fadeb38cdbc80046b1dcb370583edd13d925ae51599b3928
MD5 92d95abb1ad4949fc0da434511e89ee2
BLAKE2b-256 e2fc4916def49e306584f2427efa9be8ae8d565d391e62becae4c904b40286df

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.9-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 c5e5ed633c8ff87c275f63c676e920dfdf65396e945f7a0e5ee1d4f54728f87d
MD5 b95f34e8402f11c2cebf77d1e954b682
BLAKE2b-256 ce548dd7b3ca9682f400f0cc7f59609779d7ceca3af643ed340dada4d20da0e9

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp36-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 201.5 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 55979ad6be76f5305256495219769e888be15211835562c94bdddf37ffa5a035
MD5 b6647920b883f2076adcd7df09fc6c85
BLAKE2b-256 553d6341b5524ad9bcf8b994ec00490d23be995de716e0ff78cab2cd2ecac264

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 256.6 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 23024a690d16499a76b0b74a68e8516fe80e2997794182dce5fd42489e431ac1
MD5 edff51ea7c06c6f4ca94b2b66c4cc926
BLAKE2b-256 2f2b71a465ec4dd33736fe8764ad9940579c03427c3c6d24c6e2b38716ea4ac4

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 249.9 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 012eb0793ae103022a2f42df511f8d3810e3920a96230ce2ebfa522b2caaf169
MD5 8748d169310ec288e9ceffb7eb3420a5
BLAKE2b-256 c27c295db5d85ff71439941df84e29b6630b848db573d623a960ff8d16565dc2

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.9-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 bd12b1304491d6f296dd7b02d1ecde84c97216a019107d6a416e66604685ad23
MD5 ce18cb5f39586b77fe45d0e9bc8344e8
BLAKE2b-256 ade260b9b9ad96c439991538fc821d9f9ca0d35341375a344b9e451cdf44fb61

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp35-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 199.9 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 d16d76a3dd1ea6410f93044c7b0668a345002c065fbfd5a76d9f38edfec247af
MD5 14822bc3e6e14aea45d9280158e5880f
BLAKE2b-256 1b3b322a1d3a81d88a604f04e41f83d7273d5560d9f042401a00d2bb6abeda65

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 255.2 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 475378ff10b21e8e808e3c90b32bc089da18d6d44a3f609923433c5ed7366e85
MD5 1eb6e7c5888d62b1b5040a605fb4e476
BLAKE2b-256 c0dd2b51706192aeaa9f1f5f23fa6fa3ca4d6da5740f653d545a701d243dda49

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.1.9-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 248.8 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.19.1 setuptools/40.2.0 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.7.1

File hashes

Hashes for pyreadr-0.1.9-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 eb0ca342900c1cf0db44f74f35004ee3a8bdcbce9d116ba8c434daca19b64769
MD5 f346fc476d07ad50ea8b0082d931ce83
BLAKE2b-256 bc58ec2f545d04d9d55dcd6eef75f16b2688f273c87031f97894299c36ac759e

See more details on using hashes here.

File details

Details for the file pyreadr-0.1.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.1.9-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 68f9a6c3bd9a788b6a36c989dd206707fa79d657a68d6046def56058ed9e2dfd
MD5 a81b440ad567b77d02878ee5f405c2ac
BLAKE2b-256 8aac70f04eb7380ee6028d91702b8b2c66874f9ca209f16137b3a6af23a5fa88

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page