Skip to main content

Reads/writes R RData and Rds files into/from pandas data frames.

Project description

A Python package to read and write R RData and Rds files into/from pandas data frames. It does not need to have R or other external dependencies installed. It is based on the C library librdata and a modified version of the cython wrapper jamovi-readstat.
Please visit out project home page for more information:
https://github.com/ofajardo/pyreadr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreadr-0.2.1.tar.gz (943.8 kB view details)

Uploaded Source

Built Distributions

pyreadr-0.2.1-cp37-none-win_amd64.whl (873.0 kB view details)

Uploaded CPython 3.7 Windows x86-64

pyreadr-0.2.1-cp37-cp37m-manylinux1_x86_64.whl (219.7 kB view details)

Uploaded CPython 3.7m

pyreadr-0.2.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (234.1 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.2.1-cp36-none-win_amd64.whl (873.1 kB view details)

Uploaded CPython 3.6 Windows x86-64

pyreadr-0.2.1-cp36-cp36m-manylinux1_x86_64.whl (219.5 kB view details)

Uploaded CPython 3.6m

pyreadr-0.2.1-cp36-cp36m-manylinux1_i686.whl (213.5 kB view details)

Uploaded CPython 3.6m

pyreadr-0.2.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (236.3 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.2.1-cp35-none-win_amd64.whl (871.6 kB view details)

Uploaded CPython 3.5 Windows x86-64

pyreadr-0.2.1-cp35-cp35m-manylinux1_x86_64.whl (218.0 kB view details)

Uploaded CPython 3.5m

pyreadr-0.2.1-cp35-cp35m-manylinux1_i686.whl (211.9 kB view details)

Uploaded CPython 3.5m

pyreadr-0.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (230.6 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyreadr-0.2.1.tar.gz.

File metadata

  • Download URL: pyreadr-0.2.1.tar.gz
  • Upload date:
  • Size: 943.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1.tar.gz
Algorithm Hash digest
SHA256 d10d19a621d9e22faa007e66c3c26ba0e374911f40204ca2b586c9fc84bf6a9e
MD5 7b538c3b0cee79da4726802bccbdc964
BLAKE2b-256 9a07719033993867a6e7933c19d47942846febeaad2edf000cd45057ae6ea99e

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 873.0 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 15cae4a96eec19e1e5a424ba6404063280d44e283daf1e9a4323d7b7ce0a907e
MD5 bc2f83ab5f365d9f5e83ef8c31a5ac43
BLAKE2b-256 df074f6b726dd1ff460991fab679723c61dddc57a0397f113c532d6aca71c1d5

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 219.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 ec56ab56d789a72866bed4a1b9435c70d3ce09dd09d8f7f1e67c27fedbdf823e
MD5 c35194b7827a7131a75ab7f70a25871d
BLAKE2b-256 daa82aa6882ece34ca93ef35f0dc91a83b968ea08d91be7cb45d4cc0183929d7

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.1-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 9fbea1d0da766b82848a8d3da621215e4671d0306cacdb5dffaf10aa4cd80a73
MD5 c5438eb2e3b7ca23ab1ab821cf55121c
BLAKE2b-256 7c5582214e1577b64c6e3cc0e2fa9fb561ec4fe2755e1069738c5510772e7c7d

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp36-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 873.1 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 3fa418344fc11a67328310ae8676d7c94e9ed1f88c2e4bbd70b98050155ef7f4
MD5 3fe766fe1d788e4b09e58ac6fd1ec990
BLAKE2b-256 e20caf655abe16c68b58766e4c718053445390e190294f3a5a1bda5f081e1be9

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 219.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 8949f3d81e85125f43d168e70fb904e61e1532dc711fc9872ad76e80a9218127
MD5 028de542ff3ca60e857922459687a5b6
BLAKE2b-256 cca869cdfb59bcafc88d574865d520c61429b9ae80d447b3f2d659fef0be4afc

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 213.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 77fee1f03d4779488bdb955a57b4fb7308b13aec25167cac77220f2d6b5aa749
MD5 9091aeed49e2eaf5bbfc74655f20be02
BLAKE2b-256 d80b7f4ea6d620ff6638938a736929f5dcec160663b51b5033b4b3116613752c

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.1-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 8cf7d87c19a61adeb11778a828edcab47d63e9397452148650d8b30826d39215
MD5 9ec4d51833f9e4f78e47f400f032ae96
BLAKE2b-256 f94383af3bef8d1549bdec18ade594bb51a53a1b0278eccaf38242c865c1784c

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp35-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 871.6 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 1d6c357169e85fca1f2c7ee03b8020e416b01c0ebdee26d90aadea31197d17a2
MD5 6f282fd99e7a177c474b96db137a57cd
BLAKE2b-256 b9f8fe76fe1b78afc78ed0f92ce96f547e2aed1affed377525056c69fc0150b9

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 218.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 93fba14854ef1b178fb76e153312bdc589ab6e54fc06c184966653b06dc6954d
MD5 deaa9877ddf73166a533afb278b816cf
BLAKE2b-256 862adcc2975d40e3896f88bedf766bc8f04d1a3f41af5354dd25a63a0269bd57

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.2.1-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 211.9 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.1-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 371800fe1408fef75a6bdaed21d74ee1a47e8ecf07e01fd0e5958d3da50032c8
MD5 0752b392c11e158140f9f4898dd965cb
BLAKE2b-256 8468fd946bb1254495fe054024e891138a25683e7ac78b40ffb56dd990418097

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.1-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 811bc9daf073edbde1dc66933bad4814dd77fdbe01479420f2611605a156a316
MD5 ca1221fd9071d79cf3bbaf66c05d7edd
BLAKE2b-256 5baa94c7f001ca2205cc4b23a0edb8479dce27cf3ba57b6ab2751b41be8a4dcc

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page