Skip to main content

Reads/writes R RData and Rds files into/from pandas data frames.

Project description

A Python package to read and write R RData and Rds files into/from pandas data frames. It does not need to have R or other external dependencies installed. It is based on the C library librdata and a modified version of the cython wrapper jamovi-readstat.
Please visit out project home page for more information:
https://github.com/ofajardo/pyreadr

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyreadr-0.2.2.tar.gz (943.7 kB view details)

Uploaded Source

Built Distributions

pyreadr-0.2.2-cp37-none-win_amd64.whl (873.1 kB view details)

Uploaded CPython 3.7 Windows x86-64

pyreadr-0.2.2-cp37-cp37m-manylinux1_x86_64.whl (219.7 kB view details)

Uploaded CPython 3.7m

pyreadr-0.2.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (234.1 kB view details)

Uploaded CPython 3.7m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.2.2-cp36-none-win_amd64.whl (873.2 kB view details)

Uploaded CPython 3.6 Windows x86-64

pyreadr-0.2.2-cp36-cp36m-manylinux1_x86_64.whl (219.5 kB view details)

Uploaded CPython 3.6m

pyreadr-0.2.2-cp36-cp36m-manylinux1_i686.whl (213.5 kB view details)

Uploaded CPython 3.6m

pyreadr-0.2.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (236.4 kB view details)

Uploaded CPython 3.6m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

pyreadr-0.2.2-cp35-none-win_amd64.whl (871.6 kB view details)

Uploaded CPython 3.5 Windows x86-64

pyreadr-0.2.2-cp35-cp35m-manylinux1_x86_64.whl (218.1 kB view details)

Uploaded CPython 3.5m

pyreadr-0.2.2-cp35-cp35m-manylinux1_i686.whl (212.0 kB view details)

Uploaded CPython 3.5m

pyreadr-0.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl (230.7 kB view details)

Uploaded CPython 3.5m macOS 10.10+ intel macOS 10.10+ x86-64 macOS 10.6+ intel macOS 10.9+ intel macOS 10.9+ x86-64

File details

Details for the file pyreadr-0.2.2.tar.gz.

File metadata

  • Download URL: pyreadr-0.2.2.tar.gz
  • Upload date:
  • Size: 943.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2.tar.gz
Algorithm Hash digest
SHA256 b4d60d405ca3710b19526568cfc2721f6b530900035606132445bd1ac43e6145
MD5 960d723734a79b06b1f2410ef048c6b6
BLAKE2b-256 13c611c8fdc9bbd9a0ea9a1e186d7ee4bbe62280c45e01bb1d743145cf32c3b4

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp37-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp37-none-win_amd64.whl
  • Upload date:
  • Size: 873.1 kB
  • Tags: CPython 3.7, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp37-none-win_amd64.whl
Algorithm Hash digest
SHA256 c67153bb85dfb592b00242d27007a668ab3bdcd6f31b1e37aa2badb3666101e7
MD5 08374deb036ba79f5a8c30c9111c98f5
BLAKE2b-256 7d1b47356f9625c6a3fb352b9361b9a7d4ec1b76a1d940fe26dd011d076ed2e2

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 219.7 kB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 77f0659af8f9066ae754d6484221cbc05d9a5dd55180ad8f999dd73c51f87954
MD5 42d4a0633627bc7d6dc4bae1ce1e4ade
BLAKE2b-256 7ced4010518a8838f89431686166361bfb142e4955783e6eddfda5d074412408

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.2-cp37-cp37m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 89b11b426d0c431d913faa8e2bd380c8aa53fba6f468de788b312f38863fc05f
MD5 07757d8bd90d0df90b5316668f9c82c5
BLAKE2b-256 06d89b9b07dbbd650451e2977866247d0c857dbdacffc0af751ff442255b2451

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp36-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp36-none-win_amd64.whl
  • Upload date:
  • Size: 873.2 kB
  • Tags: CPython 3.6, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp36-none-win_amd64.whl
Algorithm Hash digest
SHA256 bad6d2ed9ce093493067a9776a07a27db6656911323af48f816e37da4e47b935
MD5 e8201f3d98d1bbb83c3adadd3e542590
BLAKE2b-256 cf9c535f0ba7400db63db1cf5b44782c339ebd676a66aafd60ccc2ac4ab83bad

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 219.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 0cda9e22aa9648e2038b001bbf409345c51a5c10c7219c955f40ec50f57175e9
MD5 2afb74f2836271200c33641c2702b5da
BLAKE2b-256 44e413f16afb83616d6ac3487ee5c60e207914a05bd77aa582a45914f138e56a

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp36-cp36m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp36-cp36m-manylinux1_i686.whl
  • Upload date:
  • Size: 213.5 kB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp36-cp36m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 3d98264de98aaef5b741498a9c7b15defcdd7c4b312f665604eaaa023b76dcb5
MD5 9d901d1809b6ccf49e0488c7128f114a
BLAKE2b-256 7202ca9adaaf159e2ef84e85189ca98b04e88926a57fbac9a19120c52c6f7edb

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.2-cp36-cp36m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 f5d258e279be28d4b8fac455381aa03c5d8ae11dab0446af63724cacb970650f
MD5 d123b9d7ea315935b0d74261df4979a4
BLAKE2b-256 c353566bffbdce6ca7f16d56317ec784c92f88a2e3a836ba6a304aac0ce7c6bf

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp35-none-win_amd64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp35-none-win_amd64.whl
  • Upload date:
  • Size: 871.6 kB
  • Tags: CPython 3.5, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp35-none-win_amd64.whl
Algorithm Hash digest
SHA256 4afb58155eb81ef248297c3aaf6a38055ac0b195bd47d1f98bec2ce3083cabb7
MD5 32dbc41e9606a3552badac942286919e
BLAKE2b-256 b13a7c5d6556a3ff3d5962a64b7019e66cb3d19196cc13e7398e3ce5108f13b7

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 218.1 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 9b6b5e305b63bcde8e4ec6e01a14b6846f9df6788be68926742b4c8c282a5d9b
MD5 4c45f279188ad7c9fb0fa3ad4df674aa
BLAKE2b-256 4ae911cba29504ed0d598c0260fd962153327aaa22824794b07bedac5d61d3f2

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp35-cp35m-manylinux1_i686.whl.

File metadata

  • Download URL: pyreadr-0.2.2-cp35-cp35m-manylinux1_i686.whl
  • Upload date:
  • Size: 212.0 kB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for pyreadr-0.2.2-cp35-cp35m-manylinux1_i686.whl
Algorithm Hash digest
SHA256 0c7d187d516749eba95f9358a14680badc2100cef00c385c833222c470eaed32
MD5 518a503e1672a1fc4c9b481da9b2ffbb
BLAKE2b-256 8830827091b31310bb07169deadb8a812ddddf70807f45200c82bc519a09161a

See more details on using hashes here.

File details

Details for the file pyreadr-0.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl.

File metadata

File hashes

Hashes for pyreadr-0.2.2-cp35-cp35m-macosx_10_6_intel.macosx_10_9_intel.macosx_10_9_x86_64.macosx_10_10_intel.macosx_10_10_x86_64.whl
Algorithm Hash digest
SHA256 448c107ea6d104afee7d8491e9d5727029b0e2b596029984fbe84bde95c68f9c
MD5 ef4092d682848de3358ed17630e8ff77
BLAKE2b-256 ef8503f7e3664e8cdee5f5bf0e4c740b19da8159450a1038c2a7f2b1b97771da

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page