Skip to main content

A data processing bundle for spark based recommender system operations

Project description

RecDP v2.0

INTRODUCTION

Problem Statement

Data Preparation is an essential step to build AI pipelines

  • key data preparation capabilities: data connector, cleaning, sampling, joining, profiling, feature engineering, low-code/no-code UI, lineage etc.
  • exploration of optimal Data preparation consumes majority of Data Science time

Solution with RecDP v2.0

  • Auto pipeline
    • only 3 lines of codes required
  • Pipeline Generator
    • Data Profiling:
      • Auto anomalies detection
      • Auto missing value impute
      • Profiling Visualizzation
    • Feature Wrangling:
      • feature transformation(datetime, geo_info, text_nlp, url, etc.)
      • multiple data auto joining
      • feature cross(aggregation transformation - sum, avg, count, etc.)
    • export pipeline as JSON file, can be import to other data platform
  • Pipeline Runner:
    • spark engine: convert pipeline to spark codes to run
    • pandas engine: convert pipeline to pandas codes to run
    • sql engine: convert pipeline to sql
  • DataLoader:
    • parquet, csv, json, database
  • FeatureWriter - ML/DL connector:
    • Data Lineage
    • Feature Store
    • numpy, csv, parquet, dgl / pyG graph RecDP v2.0 Overview

This solution is intended for

citizen data scientists, enterprise users, independent software vendor and partial of cloud service provider.

Getting Start

setup with pip

git clone --single-branch --branch RecDP_v2.0 https://github.com/intel-innersource/frameworks.bigdata.AIDK.git
cd frameworks.bigdata.AIDK/RecDP
# install dependencies
apt-get update -y &&  DEBIAN_FRONTEND=noninteractive apt-get install -y python3 python3-pip python-is-python3 graphviz
DEBIAN_FRONTEND=noninteractive apt-get install -y openjdk-8-jre
# install recdp
python setup.py sdist
pip install dist/pyrecdp-1.0.1.tar.gz

sh start-jupyter.sh
# open browser with http://hostname:8888

run

nyc taxi demo

modify pipeline (add user defined function or remove operation)

def filter_with_cond(df):
    df = df[df['Year'] <= 2018]
    return df
operation = {
    "children": [6], # will to append this new op
    "next": [7], # who will be connected to this new op
    "inline_function": filter_with_cond, # function
}
pipeline.add_operation(operation)
operation = {
    "idx": 6, # OP id to be deleted
    "next": [10] # who is connected to the to_be_deleted op
}
pipeline.delete_operation(operation)

export pipeline

pipeline.export(file_path = "exported_pipeline.json")
{
    "0": {
        "children": null,
        "op": "DataFrame",
        "config": "main_table"
    },
    "1": {
        "children": [0],
        "op": "type_infer",
        "config": [
            ["pickup_datetime",["is_string","is_datetime"]],
            ["pickup_longitude",["is_numeric","is_float"]],
            ["pickup_latitude",["is_numeric","is_float"]],
            ["dropoff_longitude",["is_numeric","is_float"]],
            ["dropoff_latitude",["is_numeric","is_float"]],
            ["passenger_count",["is_numeric","is_int64","is_integer","is_categorical"]]
        ]
    },
    "2": {
        "children": [1],
        "op": "tuple",
        "config": {
            "src": ["pickup_latitude","pickup_longitude"],"dst": "pickup_coordinates"
        }
    },
    "3": {
        "children": [2],
        "op": "tuple",
        "config": {
            "src": ["dropoff_latitude","dropoff_longitude"],"dst": "dropoff_coordinates"
        }
    },
    "4": {
        "children": [3],
        "op": "fillna",
        "config": {
            "pickup_longitude": -1,
            "pickup_latitude": -1,
            "dropoff_longitude": -1,
            "dropoff_latitude": -1,
            "passenger_count": -1
        }
    },
    "5": {
        "children": [4],
        "op": "datetime_feature",
        "config": {
            "pickup_datetime": [
                ["pickup_datetime__day",["featuretools.primitives.standard.transform.datetime.day", "Day"]],
                ["pickup_datetime__month",["featuretools.primitives.standard.transform.datetime.month","Month"]],
                ["pickup_datetime__weekday",["featuretools.primitives.standard.transform.datetime.weekday","Weekday"]],
                ["pickup_datetime__year",["featuretools.primitives.standard.transform.datetime.year","Year"]],
                ["pickup_datetime__hour",["featuretools.primitives.standard.transform.datetime.hour","Hour"]]
            ]
        }
    },
    "6": {
        "children": [5],
        "op": "haversine",
        "config": {
            "['pickup_coordinates', 'dropoff_coordinates']": ["haversine_pickup_coordinates_dropoff_coordinates",["featuretools.primitives.standard.transform.latlong.haversine","Haversine"]]
        }
    },
    "7": {
        "children": [6],
        "op": "drop",
        "config": [
            "pickup_datetime",
            "pickup_coordinates",
            "dropoff_coordinates"
        ]
    },
    "8": {
        "children": [7],
        "op": "lightgbm",
        "config": {
            "label": "fare_amount",
            "metrics": "rmse",
            "objective": "regression",
            "model_file": "lightgbm_regression_label.mdl",
            "method": "predict"
        }
    }
}

Quick Example

More Examples - completed example including training

Auto Feature Engineering vs. featuretools

  • NYC Taxi fare auto data prepration: An example to show how RecDP_v2.0 automatically generating datetime and geo features upon 55M records. Tested with both Spark and Pandas(featuretools) as compute engine, show 21x speedup by spark.

load PIPELINE and execute

Realtime Inference pipeline

Data Profiler Examples

  • NYC Taxi fare Profiler: An example to show RecDP_v2.0 to profile data, including infer the potential data type, generate data distribution charts.

  • twitter Profiler: An example to show RecDP_v2.0 to profile data, including infer the potential data type, generate data distribution charts.

LICENSE

  • Apache 2.0

Dependency

  • Spark 3.x
  • python 3.*

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyrecdp-1.0.1b20230331.tar.gz (178.6 kB view details)

Uploaded Source

File details

Details for the file pyrecdp-1.0.1b20230331.tar.gz.

File metadata

  • Download URL: pyrecdp-1.0.1b20230331.tar.gz
  • Upload date:
  • Size: 178.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 colorama/0.4.4 importlib-metadata/4.6.4 keyring/23.5.0 pkginfo/1.8.2 readme-renderer/34.0 requests-toolbelt/0.9.1 requests/2.25.1 rfc3986/1.5.0 tqdm/4.64.1 urllib3/1.26.5 CPython/3.10.6

File hashes

Hashes for pyrecdp-1.0.1b20230331.tar.gz
Algorithm Hash digest
SHA256 35830f7892e3597a02d814a70eb328c8bdee5b56f6a24319b120ab6dcc7a8df0
MD5 429f27e9cc0e1ef06f0dcfc3693afc39
BLAKE2b-256 8b878e71f9984ec91cfadcabd25a83e5e5cdc93832a5d3ccbda333b2e9a75024

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page