Skip to main content

Testframework for PySpark DataFrames

Project description

Build Status Version Ruff

pyspark-testframework

Work in progress









The goal of the pyspark-testframework is to provide a simple way to create tests for PySpark DataFrames. The test results are returned in DataFrame format as well.

Tutorial

Let's first create an example pyspark DataFrame

The data will contain the primary keys, street names and house numbers of some addresses.

from pyspark.sql import SparkSession
from pyspark.sql.types import StructType, StructField, IntegerType, StringType
from pyspark.sql import functions as F
# Initialize Spark session
spark = SparkSession.builder.appName("PySparkTestFrameworkTutorial").getOrCreate()

# Define the schema
schema = StructType(
    [
        StructField("primary_key", IntegerType(), True),
        StructField("street", StringType(), True),
        StructField("house_number", IntegerType(), True),
    ]
)

# Define the data
data = [
    (1, "Rochussenstraat", 27),
    (2, "Coolsingel", 31),
    (3, "%Witte de Withstraat", 27),
    (4, "Lijnbaan", -3),
    (5, None, 13),
]

df = spark.createDataFrame(data, schema)

df.show(truncate=False)
+-----------+--------------------+------------+
|primary_key|street              |house_number|
+-----------+--------------------+------------+
|1          |Rochussenstraat     |27          |
|2          |Coolsingel          |31          |
|3          |%Witte de Withstraat|27          |
|4          |Lijnbaan            |-3          |
|5          |null                |13          |
+-----------+--------------------+------------+

Import and initialize the DataFrameTester

from testframework.dataquality import DataFrameTester
df_tester = DataFrameTester(
    df=df,
    primary_key="primary_key",
    spark=spark,
)

Import configurable tests

from testframework.dataquality.tests import ValidNumericRange, RegexTest

Initialize the RegexTest to test for valid street names

valid_street_name = RegexTest(
    name="ValidStreetName",
    pattern=r"^[A-Z][a-zéèáàëï]*([ -][A-Z]?[a-zéèáàëï]*)*$",
)

Run valid_street_name on the street column using the .test() method of DataFrameTester.

df_tester.test(
    col="street",
    test=valid_street_name,
    nullable=False,  # nullable, hence null values are converted to True
    description="street contains valid Dutch street name.",
).show(truncate=False)
+-----------+--------------------+-----------------------+
|primary_key|street              |street__ValidStreetName|
+-----------+--------------------+-----------------------+
|1          |Rochussenstraat     |true                   |
|2          |Coolsingel          |true                   |
|3          |%Witte de Withstraat|false                  |
|4          |Lijnbaan            |true                   |
|5          |null                |false                  |
+-----------+--------------------+-----------------------+

Run the IntegerString test on the number column

df_tester.test(
    col="house_number",
    test=ValidNumericRange(
        min_value=0,
    ),
    nullable=True,  # nullable, hence null values are converted to True
    # description is optional, let's not define it for illustration purposes
).show()
+-----------+------------+-------------------------------+
|primary_key|house_number|house_number__ValidNumericRange|
+-----------+------------+-------------------------------+
|          1|          27|                           true|
|          2|          31|                           true|
|          3|          27|                           true|
|          4|          -3|                          false|
|          5|          13|                           true|
+-----------+------------+-------------------------------+

Let's take a look at the test results of the DataFrame using the .results attribute.

df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|
+-----------+-----------------------+-------------------------------+
|1          |true                   |true                           |
|2          |true                   |true                           |
|3          |false                  |true                           |
|4          |true                   |false                          |
|5          |false                  |true                           |
+-----------+-----------------------+-------------------------------+

We can use .descriptions or .descriptions_df to get the descriptions of the tests.


This can be useful for reporting purposes. For example to create reports for the business with more detailed information than just the column name and the test name.
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)'}
df_tester.description_df.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+
|test                           |description                                                  |
+-------------------------------+-------------------------------------------------------------+
|street__ValidStreetName        |street contains valid Dutch street name.                     |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|
+-------------------------------+-------------------------------------------------------------+

Custom tests

Sometimes tests are too specific or complex to be covered by the configurable tests. That's why we can create custom tests and add them to the DataFrameTester object.

Let's do this using a custom test which should tests that every house has a bath room. We'll start by creating a new DataFrame with rooms rather than houses.

rooms = [
    (1, "living room"),
    (1, "bath room"),
    (1, "kitchen"),
    (1, "bed room"),
    (2, "living room"),
    (2, "bed room"),
    (2, "kitchen"),
]

schema_rooms = StructType(
    [
        StructField("primary_key", IntegerType(), True),
        StructField("room", StringType(), True),
    ]
)

room_df = spark.createDataFrame(rooms, schema=schema_rooms)

room_df.show(truncate=False)
+-----------+-----------+
|primary_key|room       |
+-----------+-----------+
|1          |living room|
|1          |bath room  |
|1          |kitchen    |
|1          |bed room   |
|2          |living room|
|2          |bed room   |
|2          |kitchen    |
+-----------+-----------+

To create a custom test, we should create a pyspark DataFrame which contains the same primary_key column as the DataFrame to be tested using the DataFrameTester.

Let's create a boolean column that indicates whether the house has a bath room or not.

house_has_bath_room = room_df.groupBy("primary_key").agg(
    F.max(F.when(F.col("room") == "bath room", True).otherwise(False)).alias(
        "has_bath_room"
    )
)

house_has_bath_room.show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1          |true         |
|2          |false        |
+-----------+-------------+

We can add this 'custom test' to the DataFrameTester using add_custom_test_result.

In the background, all kinds of data validation checks are done by DataFrameTester to make sure that it fits the requirements to be added to the other test results.

df_tester.add_custom_test_result(
    result=house_has_bath_room,
    name="has_bath_room",
    description="House has a bath room",
    # fillna_value=0, # optional; by default null.
).show(truncate=False)
+-----------+-------------+
|primary_key|has_bath_room|
+-----------+-------------+
|1          |true         |
|2          |false        |
|3          |null         |
|4          |null         |
|5          |null         |
+-----------+-------------+

Despite that the data whether a house has a bath room is not available in the house DataFrame; we can still add the custom test to the DataFrameTester object.

df_tester.results.show(truncate=False)
+-----------+-----------------------+-------------------------------+-------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|has_bath_room|
+-----------+-----------------------+-------------------------------+-------------+
|1          |true                   |true                           |true         |
|2          |true                   |true                           |false        |
|3          |false                  |true                           |null         |
|4          |true                   |false                          |null         |
|5          |false                  |true                           |null         |
+-----------+-----------------------+-------------------------------+-------------+
df_tester.descriptions
{'street__ValidStreetName': 'street contains valid Dutch street name.',
 'house_number__ValidNumericRange': 'house_number__ValidNumericRange(min_value=0.0, max_value=inf)',
 'has_bath_room': 'House has a bath room'}

We can also get a summary of the test results using the .summary attribute.

df_tester.summary.show(truncate=False)
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|test                           |description                                                  |n_tests|n_passed|percentage_passed|n_failed|percentage_failed|
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+
|street__ValidStreetName        |street contains valid Dutch street name.                     |5      |3       |60.0             |2       |40.0             |
|house_number__ValidNumericRange|house_number__ValidNumericRange(min_value=0.0, max_value=inf)|5      |4       |80.0             |1       |20.0             |
|has_bath_room                  |House has a bath room                                        |2      |1       |50.0             |1       |50.0             |
+-------------------------------+-------------------------------------------------------------+-------+--------+-----------------+--------+-----------------+

If you want to see all rows that failed any of the tests, you can use the .failed_tests attribute.

df_tester.failed_tests.show(truncate=False)
+-----------+-----------------------+-------------------------------+-------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|has_bath_room|
+-----------+-----------------------+-------------------------------+-------------+
|2          |true                   |true                           |false        |
|3          |false                  |true                           |null         |
|4          |true                   |false                          |null         |
|5          |false                  |true                           |null         |
+-----------+-----------------------+-------------------------------+-------------+

Of course, you can also see all rows that passed all tests using the .passed_tests attribute.

df_tester.passed_tests.show(truncate=False)
+-----------+-----------------------+-------------------------------+-------------+
|primary_key|street__ValidStreetName|house_number__ValidNumericRange|has_bath_room|
+-----------+-----------------------+-------------------------------+-------------+
|1          |true                   |true                           |true         |
+-----------+-----------------------+-------------------------------+-------------+

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyspark_testframework-2.2.1.tar.gz (27.7 kB view details)

Uploaded Source

Built Distribution

pyspark_testframework-2.2.1-py3-none-any.whl (17.7 kB view details)

Uploaded Python 3

File details

Details for the file pyspark_testframework-2.2.1.tar.gz.

File metadata

  • Download URL: pyspark_testframework-2.2.1.tar.gz
  • Upload date:
  • Size: 27.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.1.0 CPython/3.12.5

File hashes

Hashes for pyspark_testframework-2.2.1.tar.gz
Algorithm Hash digest
SHA256 19909f28b75ecc558a7e5ca428687693b62eed1c60b344ffa276a2b2fbeb1916
MD5 1681ec4fdeaba2724223d0c4577e71cc
BLAKE2b-256 fd6f897f60cfcc89e28fb79542b2645ee062c75cda1a212185c91317c0d953c5

See more details on using hashes here.

File details

Details for the file pyspark_testframework-2.2.1-py3-none-any.whl.

File metadata

File hashes

Hashes for pyspark_testframework-2.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 82176e159b7a43f3be7184187614c584bb09a58deb14cdc07134993875f0b44b
MD5 54e77df0053c06e263998836eb6c3698
BLAKE2b-256 60d61061a868ec95fdb8f21bd21d0e5ba4481f0b5f54e6d0724f40dc3872f2c3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page