Skip to main content

Alpha channel of features for PyTerrier

Project description

pyterrier-alpha

Alpha channel of features for PyTerrier.

Features in ths package are under development and intend to be merged with the main package or split into a separate package when stable.

Table of Contents

Getting Started

pip install pyterrier-alpha

Import pyterrier_alpha alongside pyterrier:

import pyterrier as pt
import pyterrier_alpha as pta

pta.validate

It's a good idea to check the input to a transformer to make sure its compatible before you start using it. pta.validate provides functions for this.

def MyTransformer(pt.Transformer):
    def transform(self, inp: pd.DataFrame):
        # e.g., expects a query frame with query_vec
        pta.validate.query_frame(inp, extra_columns=['query_vec'])
        # raises an error if the specification doesn't match
Function Must have column(s) Must NOT have column(s)
pta.validate.query_frame(inp, extra_columns=...) qid + extra_columns docno
pta.validate.document_frame(inp, extra_columns=...) docno + extra_columns qid
pta.validate.result_frame(inp, extra_columns=...) qid + docno + extra_columns
pta.validate.columns(inp, includes=..., excludes=...) includes excludes
Advanced Usage (click to expand)

Sometimes a transformer has multiple acceptable input specifications, e.g., if it can act as either a retriever (with a query input) or re-ranker (with a result input). In this case, you can specify multiple possible configurations in a with pta.validate.any(inpt) as v: block:

def MyTransformer(pt.Transformer):
    def transform(self, inp: pd.DataFrame):
        # e.g., expects a query frame with query_vec
        with pta.validate.any(inp) as v:
            v.query_frame(extra_columns=['query'], mode='retrieve')
            v.result_frame(extra_columns=['query', 'text'], mode='rerank')
        # raises an error if ALL specifications do not match
        # v.mode is set to the FIRST specification that matches
        if v.mode == 'retrieve':
            ...
        if v.mode == 'rerank':
            ...

pta.DataFrameBuilder

A common pattern in Transformer implementation builds up an intermediate representation of the output DataFrame, but this can be a bit clunky, as shown below:

def MyTransformer(pt.Transformer):
    def transform(self, inp: pd.DataFrame):
        result = {
            'qid': [],
            'query': [],
            'docno': [],
            'score': [],
        }
        for qid, query in zip(inp['qid'], inp['query']):
            docnos, scores = self.some_function(qid, query)
            result['qid'].append([qid] * len(docnos))
            result['query'].append([query] * len(docnos))
            result['docno'].append(docnos)
            result['score'].append(scores)
        result = pd.DataFrame({
            'qid': np.concatenate(result['qid']),
            'query': np.concatenate(result['query']),
            'docno': np.concatenate(result['docno']),
            'score': np.concatenate(result['score']),
        })
        return result

pta.DataFrameBuilder simplifies the process of building a DataFrame by removing lots of the boilerplate. It also automatically handles various types and ensures that all columns end up with the same length. The above example can be rewritten with pta.DataFrameBuilder as follows:

def MyTransformer(pt.Transformer):
    def transform(self, inp: pd.DataFrame):
        result = pta.DataFrameBuilder(['qid', 'query', 'docno', 'score'])
        for qid, query in zip(inp['qid'], inp['query']):
            docnos, scores = self.some_function(qid, query)
            result.extend({
                'qid': qid, # automatically repeats to the length of this batch
                'query': query, # ditto
                'docno': docnos,
                'score': scores,
            })
        return result.to_df()

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pyterrier-alpha-0.1.0.tar.gz (4.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page