Alpha channel of features for PyTerrier
Project description
pyterrier-alpha
Alpha channel of features for PyTerrier.
Features in ths package are under development and intend to be merged with the main package or split into a separate package when stable.
Table of Contents
Getting Started
pip install pyterrier-alpha
Import pyterrier_alpha
alongside pyterrier
:
import pyterrier as pt
import pyterrier_alpha as pta
pta.validate
It's a good idea to check the input to a transformer to make sure its compatible before you start using it.
pta.validate
provides functions for this.
def MyTransformer(pt.Transformer):
def transform(self, inp: pd.DataFrame):
# e.g., expects a query frame with query_vec
pta.validate.query_frame(inp, extra_columns=['query_vec'])
# raises an error if the specification doesn't match
Function | Must have column(s) | Must NOT have column(s) |
---|---|---|
pta.validate.query_frame(inp, extra_columns=...) |
qid + extra_columns |
docno |
pta.validate.document_frame(inp, extra_columns=...) |
docno + extra_columns |
qid |
pta.validate.result_frame(inp, extra_columns=...) |
qid + docno + extra_columns |
|
pta.validate.columns(inp, includes=..., excludes=...) |
includes |
excludes |
Advanced Usage (click to expand)
Sometimes a transformer has multiple acceptable input specifications, e.g., if
it can act as either a retriever (with a query input) or re-ranker (with a result input).
In this case, you can specify multiple possible configurations in a with pta.validate.any(inpt) as v:
block:
def MyTransformer(pt.Transformer):
def transform(self, inp: pd.DataFrame):
# e.g., expects a query frame with query_vec
with pta.validate.any(inp) as v:
v.query_frame(extra_columns=['query'], mode='retrieve')
v.result_frame(extra_columns=['query', 'text'], mode='rerank')
# raises an error if ALL specifications do not match
# v.mode is set to the FIRST specification that matches
if v.mode == 'retrieve':
...
if v.mode == 'rerank':
...
pta.DataFrameBuilder
A common pattern in Transformer
implementation builds up an intermediate representation of the output DataFrame,
but this can be a bit clunky, as shown below:
def MyTransformer(pt.Transformer):
def transform(self, inp: pd.DataFrame):
result = {
'qid': [],
'query': [],
'docno': [],
'score': [],
}
for qid, query in zip(inp['qid'], inp['query']):
docnos, scores = self.some_function(qid, query)
result['qid'].append([qid] * len(docnos))
result['query'].append([query] * len(docnos))
result['docno'].append(docnos)
result['score'].append(scores)
result = pd.DataFrame({
'qid': np.concatenate(result['qid']),
'query': np.concatenate(result['query']),
'docno': np.concatenate(result['docno']),
'score': np.concatenate(result['score']),
})
return result
pta.DataFrameBuilder
simplifies the process of building a DataFrame by removing lots of the boilerplate.
It also automatically handles various types and ensures that all columns end up with the same length.
The above example can be rewritten with pta.DataFrameBuilder
as follows:
def MyTransformer(pt.Transformer):
def transform(self, inp: pd.DataFrame):
result = pta.DataFrameBuilder(['qid', 'query', 'docno', 'score'])
for qid, query in zip(inp['qid'], inp['query']):
docnos, scores = self.some_function(qid, query)
result.extend({
'qid': qid, # automatically repeats to the length of this batch
'query': query, # ditto
'docno': docnos,
'score': scores,
})
return result.to_df()
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.