Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.8
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.2.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b12900ed65f3f248164c71b5c3bab26970af59c04f501b4bb59fc931be9d3505
MD5 8bc3c363004d624300bef068a41f005b
BLAKE2b-256 794e2f2220bd1f331e5556ec6774f4e566ed345c23fe166812e0f18ae1476219

See more details on using hashes here.

File details

Details for the file python_moss-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.2.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0c62b228124f34aa159a691a078b3c9b038de9505227a0c17c972b3d9fb41312
MD5 d6549b60fc7c819fc10968c133356b87
BLAKE2b-256 f2039ab4c5e4f951d33f5281a8cfbfc9c397c0241c363d679503f4e6aefe643e

See more details on using hashes here.

File details

Details for the file python_moss-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.2.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fcd44d3b592e24f36795c0efb759414d7651d1ff79a3603a0a5bc0f52d684d1a
MD5 e766571537770fc6b74c4d54db5e65d4
BLAKE2b-256 22a9ec76666e1d2b692759aa48311b60e7c9cda503f6447de1b1c407c47347d6

See more details on using hashes here.

File details

Details for the file python_moss-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.2.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 25acb1195f13a5546d72640a771303ebd57646bf07e7fd645dd7fa345a45bf31
MD5 336d4ab163727a298d236fce32b0cf3d
BLAKE2b-256 f58e1ef850108e3843aa8bfda16905e249cc6ceb8d797f9535a958b685ab18a1

See more details on using hashes here.

File details

Details for the file python_moss-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.2.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dff4d0590851363994d25675d95e8c2d00d82f404e03dd748d2393d303503a76
MD5 f422516f9eabbd7c918c09f7a812e756
BLAKE2b-256 87edea2418d9a2bef957a94f1a3b72463be5947b52aa96441dfb68556fe54f13

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page