Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.8
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 89ed62def36bc26a160e721f6bb3e85072cdb41a2719b3bd7bf5201ab33fa831
MD5 34b95f8be8bfd3985042bc5b3c563ef3
BLAKE2b-256 d7408fc054e0b5542aa37ec8b6d0c52df056c3a06c8a1eaa57e5dbe3956df765

See more details on using hashes here.

File details

Details for the file python_moss-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 633210cadf27142172d74b7cf2a10248a44648aa5cd987607f2e03ac82f83c5e
MD5 aaeccd0b34cd9922e5e3f0c560afebd6
BLAKE2b-256 a19b7d74b41ab2235f2242b70fa6da6ea66d7320635b79f2ab84640dc4b8c05f

See more details on using hashes here.

File details

Details for the file python_moss-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0b918ec5183a3fc5dee3ff1b52d6baf73325db2b9d82312b244da22e3f466197
MD5 c2b48939233899af42a2ba6d5024a7a6
BLAKE2b-256 f1d8703e9afcb4c43ad0995ddac7a1a8811f2adcf0a36b9901507015ef0bc50e

See more details on using hashes here.

File details

Details for the file python_moss-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a7b71b66c1949bfb48c9b5c6957b50eb6be7cc7a063599f30e88cc7e8ef3aae0
MD5 b2c605a786169d464d342eb38e2fef61
BLAKE2b-256 cf3e77800ce21fd249f394f2d288f3d908bbf24010dbcdb4e0a4c74f40772cf8

See more details on using hashes here.

File details

Details for the file python_moss-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ed83de96d59cc26d76205be49da3abc5ad9801e3d74937598d84c18ad869b4e2
MD5 d0ccea56fe32f746af8d39a5e7b7a9bb
BLAKE2b-256 28e8ecca6909e4cd18f8a801eb17eddfd3f8167ee4351b33065013b374653c57

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page