Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.8
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.3.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.3.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3842c306acc528ba961c4f315afb488c2fed79a780b4265edc753867e9e5c972
MD5 80231af66966a4074cec22234c0a514c
BLAKE2b-256 9f773db63a3e3794b591f2fe4255712959e943f8e998e228b32d844185c030ee

See more details on using hashes here.

File details

Details for the file python_moss-0.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3806d93e02b1a56b0bc5af52dd38a8289df54878ee7ee3fe9a99622822b2a6f5
MD5 3b30cc21ff9362fd49460340cbba9169
BLAKE2b-256 eeda4bd19f07cc8756810148edf3df4e9869835267c4d89eae8d18412b57af44

See more details on using hashes here.

File details

Details for the file python_moss-0.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8e1ff5673dc27b4dc6afb4d4c163d4009141281131a6aa58f15343b58d821c3d
MD5 e7970945a844a97d4242eaa8439f5eae
BLAKE2b-256 36add6b58f99c28605acc29d3ea66e45e52930467a57f068657ea81faaacaf02

See more details on using hashes here.

File details

Details for the file python_moss-0.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 23d09f860ee5c8d81214466ff4769d55de145919935bff77fa4e0351b2611519
MD5 ed41594f0f5888ab99442a8d2562fbc8
BLAKE2b-256 d0355c47671d7a368ca54a21698066c1096b6cde00d5c09fca8ec96873f8bfdd

See more details on using hashes here.

File details

Details for the file python_moss-0.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.3.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0343a0ba6f00771ada083454e893a063639df08e889c5239527fdadea0c4e53f
MD5 d10d267b19ba477f8bb4bdaf8764f3b8
BLAKE2b-256 153410b74ffea5de178570c8fa0f4af0141d430c14601ec4e975943e9546c82f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page