Skip to main content

MObility Simulation System

Project description

MOSS: MObility Simulation System

A GPU-accelerated Large-scale Open Microscopic Traffic Simulation System

Website: https://moss.fiblab.net

Features

  • Efficient: MOSS adopts GPU as the computational engine, which accelerates 100 times compared to existing microscopic traffic simulators, allowing rapid simulation of large-scale urban road networks.
  • Realistic: MOSS provides the cutting-edge AIGC method to generate globally available realistic OD matrices for travel demand generation and allows the user to quickly calibrate the simulation parameters to obtain realistic simulation results.
  • Open: The simulator, toolchain, and sample programs will be open-sourced on Github for community access, and we hope that more people will join in the development and application of MOSS.

Related Repositories

  • mosstool: The toolchain for MOSS, URL.
  • sample programs: The sample programs for MOSS, URL.

Installation

Prerequisites

  • Linux
  • CUDA 11.8
  • Python >= 3.8

Install

pip install python-moss

FAQ

Q1: How to resolve the error ImportError: /.../libstdc++.so.6: version 'GLIBCXX_3.4.30' not found?

A1: Run conda install -c conda-forge libstdcxx-ng=12 in the current conda environment.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

python_moss-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

python_moss-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

python_moss-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

python_moss-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

python_moss-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (6.4 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

File details

Details for the file python_moss-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0fe4a2376999baa15d79de66639818195349632df37f732a7c333e62efa5fd52
MD5 055ec147f00dc7b1812053e7b2f9eeca
BLAKE2b-256 5b1e0593907f40fcb27d908f255489acb387629d3ffdf03502f55d28801294b8

See more details on using hashes here.

File details

Details for the file python_moss-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4098b4cd0040510af1e10504b37984b76bfd49e138a54efd50b86186f8b1d649
MD5 67248a8de4d59c6eaa9147710b74aee3
BLAKE2b-256 15073f9eabe621a738134d3bb4bfb9c94a761672bab11d567f743b3ab157c5c5

See more details on using hashes here.

File details

Details for the file python_moss-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 6adcc121668c58258e61216a5e142b130d6f0514f550d5147fd9576986e44ef7
MD5 f8e2b83c369c6c7e0f2b0e37551a57e4
BLAKE2b-256 973ed8c4dc03bdfbce5915355d1d27c0ca5e8436fa79d1b21e8187cdc101e117

See more details on using hashes here.

File details

Details for the file python_moss-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fa0be22a4ce08a7080747b74eafe7f9abe8f995b00deca388268db145759d064
MD5 673bdf60f9b8dd9fefa0434fa51ad6ba
BLAKE2b-256 4681f47ac837e0136ab8d82671bbc4fcc78cf7ebc39b57f00b238629305d3220

See more details on using hashes here.

File details

Details for the file python_moss-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for python_moss-0.4.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4926c7fdca954eec9088a33919db677f5449ed693312c98a386822912722b34d
MD5 7f889b5607ff3d0da7180bdc43c18784
BLAKE2b-256 c062822512054a5165a770b432cebd86a9036d0e28eedab4afa91894bf5e6627

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page