Skip to main content

A package for developing Open Agents

Project description

Mask-Predict

Download model

Description Dataset Model
MASK-PREDICT [WMT14 English-German] download (.tar.bz2)
MASK-PREDICT [WMT14 German-English] download (.tar.bz2)
MASK-PREDICT [WMT16 English-Romanian] download (.tar.bz2)
MASK-PREDICT [WMT16 Romanian-English] download (.tar.bz2)
MASK-PREDICT [WMT17 English-Chinese] download (.tar.bz2)
MASK-PREDICT [WMT17 Chinese-English] download (.tar.bz2)

Preprocess

text=PATH_YOUR_DATA

output_dir=PATH_YOUR_OUTPUT

src=source_language

tgt=target_language

model_path=PATH_TO_MASKPREDICT_MODEL_DIR

python preprocess.py --source-lang ${src} --target-lang ${tgt} --trainpref $text/train --validpref $text/valid --testpref $text/test --destdir ${output_dir}/data-bin --workers 60 --srcdict ${model_path}/maskPredict_${src}${tgt}/dict.${src}.txt --tgtdict ${model_path}/maskPredict${src}_${tgt}/dict.${tgt}.txt

Train

model_dir=PLACE_TO_SAVE_YOUR_MODEL

python train.py ${output_dir}/data-bin --arch bert_transformer_seq2seq --share-all-embeddings --criterion label_smoothed_length_cross_entropy --label-smoothing 0.1 --lr 5e-4 --warmup-init-lr 1e-7 --min-lr 1e-9 --lr-scheduler inverse_sqrt --warmup-updates 10000 --optimizer adam --adam-betas '(0.9, 0.999)' --adam-eps 1e-6 --task translation_self --max-tokens 8192 --weight-decay 0.01 --dropout 0.3 --encoder-layers 6 --encoder-embed-dim 512 --decoder-layers 6 --decoder-embed-dim 512 --fp16 --max-source-positions 10000 --max-target-positions 10000 --max-update 300000 --seed 0 --save-dir ${model_dir}

Evaluation

python generate_cmlm.py ${output_dir}/data-bin --path ${model_dir}/checkpoint_best_average.pt --task translation_self --remove-bpe --max-sentences 20 --decoding-iterations 10 --decoding-strategy mask_predict

License

MASK-PREDICT is CC-BY-NC 4.0. The license applies to the pre-trained models as well.

Citation

Please cite as:

@inproceedings{ghazvininejad2019MaskPredict,
  title = {Mask-Predict: Parallel Decoding of Conditional Masked Language Models},
  author = {Marjan Ghazvininejad, Omer Levy, Yinhan Liu, Luke Zettlemoyer},
  booktitle = {Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing},
  year = {2019},
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python_orchestra-0.1.0.tar.gz (144.5 kB view details)

Uploaded Source

Built Distribution

python_orchestra-0.1.0-py3-none-any.whl (212.0 kB view details)

Uploaded Python 3

File details

Details for the file python_orchestra-0.1.0.tar.gz.

File metadata

  • Download URL: python_orchestra-0.1.0.tar.gz
  • Upload date:
  • Size: 144.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for python_orchestra-0.1.0.tar.gz
Algorithm Hash digest
SHA256 6e0e686163cd74afdec59eff0074a88c9a1d2cf864246dbd568626affcea7d5a
MD5 9672f2023d605813643c8de966e95cbf
BLAKE2b-256 0429b6ee24bd1463bf45bf29c351da8e5d0fd952c07bd7d60e9bdfd8631deed9

See more details on using hashes here.

File details

Details for the file python_orchestra-0.1.0-py3-none-any.whl.

File metadata

File hashes

Hashes for python_orchestra-0.1.0-py3-none-any.whl
Algorithm Hash digest
SHA256 70abd6fc1f57535be6bfecf33921aba4ab72d4ca1dd68208814754d816192d58
MD5 b547ed0bed9618b787de036b5066d548
BLAKE2b-256 2d856863b7600b5db0de73abb0e15c3cf0eb44b1389d8eddbe79557472d6efaa

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page