Skip to main content

Unofficial Python package to ease access to groundwater data in South Australia

Project description

python-sa-gwdata

Open Source Love svg2 PyPI pyversions PyPI version shields.io Build Status Documentation Status Codacy Badge Codacy Badge

sa_gwdata is a Python package to ease access to groundwater data in South Australia. It provides access to JSON data from the WaterConnect Groundwater Data website, and also provides some well data from SARIG. There are simple methods to easily turn this data into pandas DataFrames.

This is an unofficial side-project done in my spare time.

Install

> pip install python-sa-gwdata

How to use

Check out the documentation, and some tutorial Jupyter Notebooks in the notebooks folder.

Start a web session with Groundwater Data:

>>> import sa_gwdata
>>> session = sa_gwdata.WaterConnectSession()

On initialisation it downloads some summary information.

>>> session.networks
{'ANGBRM': 'Angas Bremer PWA',
 'AW_NP': 'Alinytjara Wilurara Non-Prescribed Area',
 'BAROOTA': 'Baroota PWRA',
 'BAROSSA': 'Barossa PWRA',
 'BAROSS_IRR': 'Barossa irrigation wells salinity monitoring',
 'BERI_REN': 'Berri and Renmark Irrigation Areas',
 'BOT_GDNS': 'Botanic Gardens wetlands',
 'CENT_ADEL': 'Central Adelaide PWA',
 'CHOWILLA': 'Chowilla Floodplain',
 ...
}

With this information we can make some direct REST calls:

>>> r = session.get("GetObswellNetworkData", params={"Network": "CENT_ADEL"})
>>> r.df.head(5)
	aq_mon	chem	class	dhno	drill_date	lat	latest_open_date	latest_open_depth	latest_sal_date	latest_swl_date	...	pwa	replaceunitnum	sal	salstatus	stat_desc	swl	swlstatus	tds	water	yield
0	Tomw(T2)	Y	WW	27382	1968-02-07	-34.764662	1992-02-20	225.00	2013-09-02	2018-09-18	...	Central Adelaide	NaN	Y	C	OPR	3.47	C	3620.0	Y	2.00
1	Qhcks	N	WW	27437	1963-01-01	-34.800905	1963-01-01	6.40	1984-02-01	1986-03-05	...	Central Adelaide	NaN	Y	H	NaN	5.86	H	1121.0	Y	NaN
2	Tomw(T1)	Y	WW	27443	1972-04-20	-34.811124	2014-04-01	0.00	1991-10-09	2003-07-04	...	Central Adelaide	NaN	Y	H	BKF	NaN	H	2030.0	Y	5.00
3	Tomw(T1)	Y	WW	27504	1978-02-28	-34.779893	1978-02-28	144.50	2016-04-06	2011-09-18	...	Central Adelaide	NaN	Y	H	OPR	11.21	H	2738.0	Y	0.00
4	Tomw(T1)	Y	WW	27569	1975-01-01	-34.891250	1975-07-09	131.10	1986-11-13	1988-09-21	...	Central Adelaide	NaN	Y	H	BKF	9.90	H	42070.0	Y	12.50

Get water levels:

>>> wl = session.get("GetWaterLevelDetails", params={"DHNO": 188444}).df
>>> wl.head(5)
	anomalous_ind	data_source_code	measured_during	obs_date	pumping_ind	rswl	standing_water_level
0	N	DEWNR	D	2002-01-28	N	-8.12	15.08
1	N	DEWNR	M	2002-03-06	N	-12.50	19.46
2	N	DEWNR	M	2002-10-02	N	-3.43	10.39
3	N	DEWNR	M	2003-03-04	N	-11.69	18.65
4	N	DEWNR	M	2003-09-27	N	-1.93	8.89

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

python-sa-gwdata-0.5.2.tar.gz (8.2 kB view details)

Uploaded Source

Built Distribution

python_sa_gwdata-0.5.2-py3-none-any.whl (13.6 kB view details)

Uploaded Python 3

File details

Details for the file python-sa-gwdata-0.5.2.tar.gz.

File metadata

  • Download URL: python-sa-gwdata-0.5.2.tar.gz
  • Upload date:
  • Size: 8.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for python-sa-gwdata-0.5.2.tar.gz
Algorithm Hash digest
SHA256 5cfd344350950ae96f2eb07280e33422c913d6b45a15aa57c269a6ac1c200b36
MD5 eea7ae4a7b77237719c607d0cd8b41d0
BLAKE2b-256 529cbc8f10e25c3ba1bc497ab24527378c5f97ba7b8394bd67247febf0d323ef

See more details on using hashes here.

File details

Details for the file python_sa_gwdata-0.5.2-py3-none-any.whl.

File metadata

  • Download URL: python_sa_gwdata-0.5.2-py3-none-any.whl
  • Upload date:
  • Size: 13.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/3.7.3

File hashes

Hashes for python_sa_gwdata-0.5.2-py3-none-any.whl
Algorithm Hash digest
SHA256 04099a30d526eaa3578090f09c28ef5f23572b3c918daf092cf907eb401ca8aa
MD5 4b0c7e0644417525cb38e89232d34bfc
BLAKE2b-256 16dfe13c81c8509571ad8c6e4e0b26e8889e74ae57839f47c67aaab5fa75c0e1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page