Skip to main content

Python module for interfacing with the CQC tket library of quantum software

Project description

Pytket is a python module for interfacing with TKET, an optimising compiler for quantum circuits developed by Quantinuum. In addition to pytket there are several extension modules for accessing a range of quantum hardware and classical simulators. The extension modules also provide integration with several widely used quantum software tools.

The source code for the TKET compiler can be found in this github repository.

Installation

Installation is supported for Linux, MacOS and Windows. Installation requires python 3.9, 3.10 or 3.11.

To install run the pip command:

pip install pytket

See Installation troubleshooting for help with installation.

To install the pytket extension modules add a hyphen and the extension name to the command:

pip install pytket-quantinuum

For a list of pytket extensions see this page: https://cqcl.github.io/pytket-extensions/api/index.html.

Warning. There is a known issue with installing pytket in a conda environment on MacOS: you may not be able to install versions more recent then 1.11.0. The only known remedy is to use an official Python distribution instead.

Documentation and Examples

API reference: https://cqcl.github.io/tket/pytket/api/

To get started using pytket see the user manual.

For worked examples using TKET see our notebook examples.

Support and Discussion

For bugs and feature requests we recommend creating an issue on the github repository.

User support: tket-support@cambridgequantum.com

For discussion, join the public slack channel here.

Mailing list: join here.

Citation

If you wish to cite TKET in any academic publications, we generally recommend citing our software overview paper for most cases.

If your work is on the topic of specific compilation tasks, it may be more appropriate to cite one of our other papers:

  • "On the qubit routing problem" for qubit placement (a.k.a. allocation) and routing (a.k.a. swap network insertion, connectivity solving). https://arxiv.org/abs/1902.08091 .
  • "Phase Gadget Synthesis for Shallow Circuits" for representing exponentiated Pauli operators in the ZX calculus and their circuit decompositions. https://arxiv.org/abs/1906.01734 .
  • "A Generic Compilation Strategy for the Unitary Coupled Cluster Ansatz" for sequencing of terms in Trotterisation and Pauli diagonalisation. https://arxiv.org/abs/2007.10515 .

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

pytket-1.22.0rc1-cp311-cp311-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.11 Windows x86-64

pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

pytket-1.22.0rc1-cp311-cp311-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

pytket-1.22.0rc1-cp311-cp311-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

pytket-1.22.0rc1-cp310-cp310-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.10 Windows x86-64

pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

pytket-1.22.0rc1-cp310-cp310-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

pytket-1.22.0rc1-cp310-cp310-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

pytket-1.22.0rc1-cp39-cp39-win_amd64.whl (8.0 MB view details)

Uploaded CPython 3.9 Windows x86-64

pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (7.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

pytket-1.22.0rc1-cp39-cp39-macosx_12_0_x86_64.whl (6.2 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

pytket-1.22.0rc1-cp39-cp39-macosx_12_0_arm64.whl (5.7 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file pytket-1.22.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 80f2617616b1c2e26019d32603dd51830c7187b768666e6637947edd40bf90e6
MD5 3ebf4ee296af42ea841bb3cc12613800
BLAKE2b-256 d9263b078a52157a245268b0f07ba6fa842fa6b002cba6864c73a44f5d81c9a4

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e23b4eeac7cbaedd9c434b01ee5e1f798847944c5721bcbed94f8c5ae89d64ff
MD5 ba9a2a404fac475a4744d30a3d50c841
BLAKE2b-256 c3bb411d4a66a91eb891f159d24d2b2ebc823ac6dad97b326ed898ea0550a549

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 19047f884af960398cae4a3068f2db4607ce7682ee7b8522c1474c9986296c26
MD5 bd5088df75f58847d9a46c09dd44ed69
BLAKE2b-256 5f1cf87375867ed91fbbb49ce7e1331993fd85e7f43202fa19c69329978fe897

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 fd8de419db696ced73352301da07625d6f2860731286d7c6f2e166f5f271c840
MD5 9ba2b81356bef0ef93d4c6641f5a5bbc
BLAKE2b-256 7c6f6c2e08fbba7927ed971bc5f59e1ec685686664ab0387373f95db435f5bf1

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 0a157453b927466c57a1405be7331e4dbbd989c86d24f28c374025415d7a37cd
MD5 d6b362ac6e348703f256e90a17c54dc9
BLAKE2b-256 5143bbc94f07ecc79133431cd2ffdbc3cd8570133d2cbe61c1bd3dbab2cd7e4f

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 7bbaec25dff747e354648efd70537a20946b3b0c8ff2b6a6b2c9b9e3ed5f4f1f
MD5 157978fbc40bd532d16de4ca4598db7d
BLAKE2b-256 932e0b4c89977c392db5349342cb40cb9103605a26966ce3b92305ecfbba58c0

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0f2a8604d4af010a470dc6cc29104842564a9d1f472d534143db8f8566396085
MD5 adc59ef1b45e9fed1c259261b1ea4187
BLAKE2b-256 a25231bdb34c46f93cde0c0845e430ad26dfad6d1d8d77b16c04f9ed73ad8330

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 889d42b3f548bcad9d73ef406bc9545c8da724053f0566542f191d1c4c23d8c5
MD5 feedf6e703de77d7d9485845c1c9b06b
BLAKE2b-256 505cf32096e8de110bc5cce4f828bb6f00aefc6910c5655f3c90142a63394860

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 3f159b975e3a7c082d712c010eef46d419a1318b90e4af7f0e58544f1f667201
MD5 a60617cddc4d67a499b35852146e6f39
BLAKE2b-256 cda98dd710136553e1ead5f6533582b86348117270f8bcabbb598acef3ee3806

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 dee451f783a948c535b7e7093575da094fb3764513c2c33b13db13060beeb60e
MD5 6c314d0f10eb57dcbcef5b7dc99bb425
BLAKE2b-256 29931f43309bbf13b04e1617c2fad02ce0fb9390ac0d8273c543295d26c6651b

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 52bd55a5058b4d01be91016e150ca38192672ba08c8b7f0ac56e4852e263a86e
MD5 84f2c1eb825cc5224a888a786f13ff5e
BLAKE2b-256 ba1267fb09bb8206047de283e7fdbe1877aa862ec12d6a5b58b4bec18b1c0056

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 c86520d8143dbb943de177f1767c49b137e96e9ea0a72f4b03019102cc0a4504
MD5 773e853c26039882d17a6578d67d8d9a
BLAKE2b-256 dd4ad044cb141a70c576b79f2f8ca8ef103a4aa5459669ad5e2657f6b3226825

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 801a8908d3f6720753e0f4cacc058c07eff27bac147f89828a7544d35a6ea7a7
MD5 e81a52e24e08b9ee3ad0fd6defb8d6ca
BLAKE2b-256 8b17095a639a010645a744e0642a69b3f010a0e5a801e6992e30b5662f1c24b5

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 14c0f684ab199b5073b61bda5351685bc78b7b89724b3f4f756c503e300a5450
MD5 2aa86b586123817fa3bc90b060596a8e
BLAKE2b-256 c5f5911a1b4f8bbf2ea65731e586eb1c376c4423d13d76d0cd0093f800c4d18b

See more details on using hashes here.

File details

Details for the file pytket-1.22.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for pytket-1.22.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 6f4095aeb37a0aedeabc00cfda26f9d57088ef105d4753875f6e3f6e6d698b55
MD5 aa71a9e27f0bcf005120a6bbd2f5f394
BLAKE2b-256 bbd8926f4fb21d7630963b9a18ec8aef931e082b676db518b707637c1506eb08

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page