Skip to main content

Prompt engineering tool using BLIP 1/2 + CLIP Interrogate approach.

Project description

pytorch_clip_interrogator: Image-To-Promt.

Downloads Downloads Downloads

Install package

pip install pytorch_clip_interrogator

Install the latest version

pip install --upgrade git+https://github.com/bes-dev/pytorch_clip_interrogator.git

Features

  • Fully compatible with models from Huggingface.
  • Supports BLIP 1/2 model.
  • Support batch processing.

Usage

Simple code

import torch
import requests
from PIL import Image
from pytorch_clip_interrogator import PromptEngineer

# build pipeline
pipe = PromptEngineer(
    blip_model="Salesforce/blip2-opt-2.7b",
    clip_model="openai/clip-vit-base-patch32",
    device="cuda",
    torch_dtype=torch.float16
)

# load image
img_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'
image = Image.open(requests.get(img_url, stream=True).raw).convert('RGB')


# generate caption
print(pipe(image))

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file pytorch_clip_interrogator-2023.2.19.15-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_clip_interrogator-2023.2.19.15-py3-none-any.whl
Algorithm Hash digest
SHA256 f9d93c8153355d3c028e17f674a17ab76a713eb20a3ffccc1b99d962562f7782
MD5 df403268a44b52e578f883bc1f40e421
BLAKE2b-256 2f4ace5c2202976e0ba3dbd939f286e5ffd4b20cbb084f3d1b25c79dc0f14968

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page