Skip to main content

Dataloader with concurrency improvements (from https://github.com/iarai/concurrent-dataloader)

Project description

PytorchConcurrentDataloader

publish

Minimal version of the ConcurrentDataloader repository published to pip.

Setup

pip install pytorch-concurrent-dataloader

Usage

  • replace torch.utils.data.DataLoader with pytorch_concurrent_dataloader.DataLoader
  • pass new parameters for concurrent dataloading
from pytorch_concurrent_dataloader import DataLoader
dataloader = DataLoader(
    # pass old parameters as usual
    dataset=..., 
    batch_size=...,
    num_workers=...,
    # pass new parameters
    num_fetch_workers=...,
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorch_concurrent_dataloader-0.0.4.tar.gz (29.2 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file pytorch_concurrent_dataloader-0.0.4.tar.gz.

File metadata

File hashes

Hashes for pytorch_concurrent_dataloader-0.0.4.tar.gz
Algorithm Hash digest
SHA256 b60327bf1be315ce98f1f1418fe1d13ed6bc7295b6b6659dfb616a54fc926546
MD5 f24108e8888f47efd7d2cff33c37f8c8
BLAKE2b-256 a9fc73d26a1767ef50659df2060698baf3bddcff5b1a7ae553f6d0e8a06ed64a

See more details on using hashes here.

File details

Details for the file pytorch_concurrent_dataloader-0.0.4-py3-none-any.whl.

File metadata

File hashes

Hashes for pytorch_concurrent_dataloader-0.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 0ca4082594efd7437a2e11a99f9ec9a7893cdaa09ba67df66280a8db78d58639
MD5 c3f4983e47a2c0a16e63027415e86240
BLAKE2b-256 320946da21f16ad97b7328bbb89af75a6e7597536ae00177e74fc8f516ca69a3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page