PyTorch implementation of Glow
Project description
Glow: Generative Flow with Invertible 1x1 Convolutions [Work in Progress]
Unofficial PyTorch implementation of "Glow: Generative Flow with Invertible 1x1 Convolutions"
The original paper can be found here.
The code is based off another implementation found here.
This repository contain the Glow model code and associated training / sampling scripts.
This repository is a work in progress. Default parameters may not be optimal!
Usage
Glow Training
Run Glow training using config file cfg.toml
. Defaults to config/cifar10.toml
python main.py --cfg-path cfg.toml --no-amp
currently recommend NOT using automatic mixed precision (AMP)
Other useful flags:
--nb-samples # number of samples to generate when evaluating [16]
--resume # resume training from specified checkpoint
--seed # set RNG seed
--no-save # disable saving of checkpoints [False]
--no-cuda # disable the use of CUDA device [False]
--no-amp # disable the use of automatic mixed precision [False]
--nb-workers # set number of dataloader workers. [4]
--no-grad-checkpoint # don't checkpoint gradients [False]
--temperature # set temperature when sampling at evaluation [0.7]
Glow Sampling
Run Glow sampling using config file cfg.toml
from checkpoint checkpoint.pt
using sample mode mode
:
python main.py --sample --sample-mode mode --resume checkpoint.pt --cfg-path cfg.toml --no-amp
Other flags from training will also work during sampling.
The sampling modes are:
normal
: samples random latent and displays corresponding samples, saving tosample.jpg
vtemp
: samples random latent and varies temperature, dumping samplessamples-vtemp/
interpolate
: computes latent of dataset items, then linearly interpolates between them, dumping samples insamples-interpolate/
Samples
TODO: add (nice) sample outputs
Checkpoints
TODO: add pretrained checkpoints
TODO:
- Glow Model
- Training script
- Sampling script
- Gradient checkpoints
- PyPi library
- Add pretrained models / nice samples
Citations:
Glow: Generative Flow with Invertible 1x1 Convolutions
Diederik P. Kingma, Prafulla Dhariwal
@misc{kingma2018glow,
title={Glow: Generative Flow with Invertible 1x1 Convolutions},
author={Diederik P. Kingma and Prafulla Dhariwal},
year={2018},
eprint={1807.03039},
archivePrefix={arXiv},
primaryClass={stat.ML}
}
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file pytorch-glow-0.0.1.tar.gz
.
File metadata
- Download URL: pytorch-glow-0.0.1.tar.gz
- Upload date:
- Size: 7.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1ccf0f4e34ece99a327ea92b64d95fc4d474e74d6397edf2e22311289e945330 |
|
MD5 | e7cd4f6de437d5513fd84ee0b95f634a |
|
BLAKE2b-256 | 0c87827856d97edb481ae132443494e18ec065e812407464a348866f06f222e9 |
File details
Details for the file pytorch_glow-0.0.1-py3-none-any.whl
.
File metadata
- Download URL: pytorch_glow-0.0.1-py3-none-any.whl
- Upload date:
- Size: 7.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | a5a5529d49f16c6c0599b38158e0e66dfa96087c53c13b1066911418b7b2aa19 |
|
MD5 | 1f03e5b8b06c73920c73d19e13a390f1 |
|
BLAKE2b-256 | 75dd340a5d3466e112400c0a90a8f354936e0a7b5eff984c17403d9084ff786d |