Collaborative Metric Learning implemented by Pytorch
Project description
Pytorch CML
Collaborative Metric Learning implemented by pytorch
Usage
- Set model, optimizer, loss, sampler and evaluator.
- Input these to trainer.
- Run fit method.
See examples for detail.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
PytorchCML-0.2.5.tar.gz
(10.7 kB
view details)
Built Distribution
File details
Details for the file PytorchCML-0.2.5.tar.gz
.
File metadata
- Download URL: PytorchCML-0.2.5.tar.gz
- Upload date:
- Size: 10.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.8 CPython/3.9.6 Linux/5.8.0-1039-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | c8d05c0f7366794b9674caca6882987e04878d20a5c3372468f5ed67877523d6 |
|
MD5 | 7702c5171616e10d0a48096e59f06535 |
|
BLAKE2b-256 | b29b7d540350ee949fa9dd8f4a65cc5b59c4566c25b663fb1a8fe408d4a80e5a |
File details
Details for the file PytorchCML-0.2.5-py3-none-any.whl
.
File metadata
- Download URL: PytorchCML-0.2.5-py3-none-any.whl
- Upload date:
- Size: 22.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.1.8 CPython/3.9.6 Linux/5.8.0-1039-azure
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e3c92eaa53b6ae2aa4d8157e1932351247cf97098ad4a2144afd90a26769717f |
|
MD5 | 113610b2a72e03d05cea2261f5fa34e9 |
|
BLAKE2b-256 | 7606e8ba5cc6902163c7f7c40f80f0b28e8cd58a1fed40719357cd9d2234f4a1 |