Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.11.tar.gz (44.8 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.11-py2.py3-none-any.whl (85.0 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.11.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.11.tar.gz
  • Upload date:
  • Size: 44.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.11.tar.gz
Algorithm Hash digest
SHA256 d420df14d9f49d3e27ec198d59f33ab3fd371f7e5798b4b15282dda4b32f1811
MD5 39a42ad37387348d5ce882bea7b4d019
BLAKE2b-256 f5aa5b3c4cf724fb924d9fc283e15d2b6fc8d27e974983bd8d540c37adacdb62

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.11-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.11-py2.py3-none-any.whl
  • Upload date:
  • Size: 85.0 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.11-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1e628d6742b01768db3a7815cdf86021041bb19e762b398de799c1aa0ba5d79b
MD5 cff728059c59f55f791953e7c1ed59c8
BLAKE2b-256 0176d7ff6184cc5d08256617349882aa7c46c7cb3526738e3f3e4794ab409baf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page