Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.13.tar.gz (47.0 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.13-py2.py3-none-any.whl (89.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.13.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.13.tar.gz
  • Upload date:
  • Size: 47.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.13.tar.gz
Algorithm Hash digest
SHA256 7071e026c240ec6fed315d50c4174726063b2186af82c9405e2f5467c0f319b2
MD5 be578025067b835603fa7b4be9ee23f2
BLAKE2b-256 3c0e9603b34e01f90ad4e7c15237ec50504d04633ed9727355f0666e6203e55e

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.13-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.13-py2.py3-none-any.whl
  • Upload date:
  • Size: 89.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.13-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 cab271f812a57a9e7b40bda538c6b546e45de83619245eccb204902d472d22c2
MD5 e900e0dbb1e3fae8b48e57e8e612b12f
BLAKE2b-256 ea0b7537f65892d241c4b2fa870cf26b2dd2afbd103e3552556581de68e06bf5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page