Skip to main content

Image classification models for PyTorch

Project description

Large-scale image classification networks

Several large-scale image classification models on PyTorch, trained on the ImageNet-1k dataset.

Installation

To install, use:

pip install pytorchcv torch>=0.4.1

To enable/disable different hardware supports such as GPUs, check out PyTorch installation instructions.

Usage

Example of using the pretrained ResNet-18 model:

from pytorchcv.model_provider import get_model as ptcv_get_model
net = ptcv_get_model("resnet18", pretrained=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

pytorchcv-0.0.14.tar.gz (47.9 kB view details)

Uploaded Source

Built Distribution

pytorchcv-0.0.14-py2.py3-none-any.whl (92.3 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file pytorchcv-0.0.14.tar.gz.

File metadata

  • Download URL: pytorchcv-0.0.14.tar.gz
  • Upload date:
  • Size: 47.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.14.tar.gz
Algorithm Hash digest
SHA256 839a7749dfd34c05f80b6b41d214d76a9e3911b0c2ec15f330c745f447ffc067
MD5 81fac872471a8b7ce12179f895be4752
BLAKE2b-256 7e9420e467027f64a0d1754fbba79c66b0e0d798b9f8dea30c460b199247274c

See more details on using hashes here.

File details

Details for the file pytorchcv-0.0.14-py2.py3-none-any.whl.

File metadata

  • Download URL: pytorchcv-0.0.14-py2.py3-none-any.whl
  • Upload date:
  • Size: 92.3 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.23.4 CPython/3.6.5

File hashes

Hashes for pytorchcv-0.0.14-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 d1bf18d9e64bf27aac3379a2b47783d2f70c44df359e67ed15b2c7afc430002a
MD5 081d4bd1da65ba17fa93f6e090f73b52
BLAKE2b-256 aa1e4935c6549923ddb66cbfd4343407357e258d32d225b1d101ca3a1d7f06b9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page